

Uwe Hahne and Marc Alexa

Combining Time-of-Flight Depth and Stereo Images without Accurate Extrinsic Calibration

Motivation

Dynamic 3D Imaging

Workshop in Conjunction with DAGM September 11th 2007 · Heidelberg

- The human visual system is three-dimensional (3D)!
- 3D reconstruction of real world objects is widelyused in Science, Web, Games, Movies, TV...
- Upcoming stereoscopic displays are a step towards "3D TV"

→ Stereo Vision

Motivation

Dynamic 3D Imaging

Workshop in Conjunction with DAGM September 11th 2007 · Heidelberg

- However, the stereo problem is still unsolved!
 - no features, no matching
- New 3D camera technologies
 - PMD
 - Zcam

[3DV Systems 2007]

[PMDTec]

→ Use these new technologies to enhance stereo imaging

Setup

Dynamic 3D Imaging

Setup

Dynamic 3D Imaging

Setup

Dynamic 3D Imaging

Calibration

Dynamic 3D ImagingWorkshop in Conjunction with DAGM
September 11th 2007 · Heidelberg

- Register all three images
 - Intrinsic and extrinsic parameters
 - Using OpenCV/Matlab CalibTK
- Problems due to:

- 1. Digital consumer cameras' mechanics
- 2. PMD camera has low resolution and **no real** intensity images
- 3. Cameras' views **differ too much** for same extrinsic calibration target

Calibration

Stereo basics

Dynamic 3D ImagingWorkshop in Conjunction with DAGM
September 11th 2007 · Heidelberg

- Stereo algorithms' problems
 - Ambivalent correspondences
 - Depth discontinuities

→ PMD data compensates stereo's weakness

- Strong noise in PMD image:
 - Taking 20 images
 - Mean and Median image
 - Variance image
- Enhances image quality

Dynamic 3D ImagingWorkshop in Conjunction with DA

Dynamic 3D Imaging

Dynamic 3D Imaging

- Strong noise in PMD image:
 - Taking 20 images
 - Mean and Median image
 - Variance image
- Enhances image quality
- Variance gives information about the confidence of the depth values

Algorithm

- "Best formulated as a global problem" [Tomasi2005]
 - Dynamic programming
 - Max Flow/Min Cut
 - Our algorithm is based on Graph Cut formulation [Paris2004]
- Idea: Surfaces are diffuse and strong depth discontinuities exist only between objects
- Goal: Find a parametric surface S that minimizes an energy functional with two terms:
 - Consistency c and Smoothing α

Dynamic 3D Imaging

Workshop in Conjunction with DAGM September 11th 2007 · Heidelberg

Process overview:

- Build a volume
- Define domain of interest (DOI)
- Construct graph
- Set weights at edges
 - consistency
 - smoothing
- Min cut gives the surface

Dynamic 3D Imaging

- Volume size 400x300x100 =12 Mio. voxels
- Define DOI using the PMD depth image (median and variance)
- Volume has to remain6-connected
- Results in approx. 2 Mio voxels
 - Strongly reduced but still huge!

Dynamic 3D Imaging

Workshop in Conjunction with DAGM September 11th 2007 · Heidelberg

Constructing a graph:

- For each voxel: one edge for the consistency term c
- Between each
 neighbouring voxel:
 two edges (for x and y)
 weighted with
 smoothing term α

Dynamic 3D ImagingWorkshop in Conjunction with DAGM
September 11th 2007 · Heidelberg

Consistency term:

- PMD median image with variance
- Stereo consistency with NCC or SSD
- Add sink and source and connect them with infinitely weighted edges

Smoothing term:

- Depth differences in PMD image
- Color differences inside both stereo images

Dynamic 3D Imaging Workshop in Conjunction with DAGM September 11th 2007 · Heidelberg

Stereo (DOI with PMD) Our reconstruction

Dynamic 3D Imaging Workshop in Conjunction with DAGM September 11th 2007 · Heidelberg

Stereo (DOI with PMD)
 Our reconstruction

Dynamic 3D ImagingWorkshop in Conjunction with DAGM
September 11th 2007 · Heidelberg

PMD median image

original resolutions

Our reconstruction

Dynamic 3D ImagingWorkshop in Conjunction with DAGM
September 11th 2007 · Heidelberg

PMD median image

Our reconstruction

Dynamic 3D ImagingWorkshop in Conjunction with DAGM
September 11th 2007 · Heidelberg

PMD median image

Our reconstruction

Discussion

- Enhancement of 3D reconstruction without accurate calibration
- Speed up the surface reconstruction using a DOI
 - Computation time are still several minutes
- Higher resolution is limited by algorithm
- Results show only a proof of concept
- Exact evaluation of accuracy is missing

Future work

- For better results, an accurate calibration is indispensable
 - Using other cameras and a more professional setup
- Computation times will be enhanced
 - Faster stereo algorithms
 - Use PMD data especially for acceleration
- Create Applications
 - AR, VR, Object reconstruction, Motion capturing...

References

- [Paris2006] Paris, Sylvain and Sillion, François and Quan, Long A Surface Reconstruction Method Using Global Graph Cut Optimization, International Journal of Computer Vision, 2006
- [Paris2004] Sylvain Paris and François Sillion and Long Quan A Surface
 Reconstruction Method Using Global Graph Cut Optimization, Asian Conference of
 Computer Vision, 2004
- [Tomasi2005] C. Tomasi Global Stereo in Polynomial Time, Computational Vision in Neural and Machine Systems, 2005