

Uwe Hahne, Jonas Schild, Stefan Elstner and Marc Alexa

MULTI-TOUCH FOCUS+CONTEXT SKETCH-BASED INTERACTION

Uwe Hahne, Jonas Schild, St. fan Elstner and Marc Alexa

MULTI-TOUCH JOCUS+CONTEXT SKETCH-BASED INTERACTION

Uwe Hahne, Jonas Schild, Stefan Fistner and Marc Alexa

MULTI-TOUCH FOCUS+CONTEXT SKETCH-BASED INTERACTION

Uwe Hahne, Jonas Schild, Stefan Elstner and Marc Alexa

SKETCH-BASED INTERACTION

Uwe Hahne, Jonas Schild, St. fan Elstner and Marc Alexa

MULTI-TOUCH JOCUS+CONTEXT SKETCH-BASED INTERACTION

Three basic technologies

D (direct illumination)

Capacitive sensors

FTIR (frustrated total internal reflection)

Three basic technologies

(direct illumination)

Capacitive sensors

FTIR (frustrated total internal reflection)

Three basic technologies

(direct illumination)

Capacitive sensors

FTIR (frustrated total internal reflection)

FTIR

FTIR

Constructing a FTIR-based multi-touch table

Drawing+SketchingFingers are unprecise and uncomfortable

Related work

e.g. **C-Slate**, N-Trigs[™] **DuoSense®** technology as well as **FLUX** support

Uwe Hahne, Jonas Schild, Stefan Fistner and Marc Alexa

MULTI-TOUCH FOCUS+CONTEXT SKETCH-BASED INTERACTION

Division of Focus and Context

inspired by human visual system

related work by [Sanneblad and Holmquist]

-First add some feet

-First add some feet!

-Focus:

- -Higher resolution than projection
- -Movable
- -Pen input at high prescision

-First add some feet!

-Focus:

-Higher resolution than projection

-Movable

-Pen input at high prescision

-Context:

-Multitouch surface

-Bright large scale display

Technology

MULTI-TOUCH FUCUS-ESNITEXT

SKETCH-BASED INTERACTION

Display underlying information

Tracking is necessary

Simple adaptation of the pen display

How multi-touch works in our case:

Client-Server architecture

Pulsed IR illumination

Alternating frames (FTIR ↔ Ref)

Point matching

Active markers are easy to identify in the reference image.

Point matching

Active markers are easy to identify in the reference image.

Matching of three points comes from the relative distances of the corners.

Three points define a rigid transformation.

Uwe Hahne, Jonas Applications

MULTI-TOUCH FUCUS+CONTEXT

SKETCH-BASED INTERACTION

ApplicationsProof of concept with fish-tank

Interactive map **application**Using the Google Earth™ API

Sketch based modeling

Focus:

- Working on details
- Exact manipulations
- Movable

Context:

- Navigation
- Coarse sketching
- Overview

Sketch based modeling application

Based on FiberMesh [Nealen2007]

- 3D shape modelling from scratch
- Shape is defined by curves
- Manipulation with gestures

FiberMesh

Designing Freeform Surfaces with 3D Curves

Andrew Nealen TU Berlin Takeo Igarashi The University of Tokyo

Olga Sorkine TU Berlin Marc Alexa TU Berlin

FiberMesh in Focus+Context Sketching and navigating

Overview

Curve manipulation

Navigation: Panning -- Zoom+Z-Rotation -- Axis Rotation

The state of the s

Further research

How do users act?

- Prefer they physical navigation or touch gestures?
- What happens in a multi-user setup?
- Is it disturbing being blocked from touching in Focus?

Can the Focus+Context approach succeed in public?

- Assuming public multi-touch tables everwhere...
- Which personal devices make sense to be placed on such an interactive table?

Further research

How do users act?

- Prefer they physical navigation or touch gestures?
- What happens in a multi-user setup?
- Is it disturbing being blocked from touching in Focus?

Can the Focus+Context approach succeed in public?

- Assuming public multi-touch tables everwhere...
- Which personal devices can support SBM when placed on an interactive table?

Thank you for listening.

Uwe Hahne, Jonas Schild, Stefan Elstner and Marc Alexa

MULTI-TOUCH FOCUS+CONTEXT SKETCH-BASED INTERACTION

