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Abstract

Abstract

This diploma thesis has been created in cooperation with DaimlerChrysler. A software has been developed

that supports the assembly simulations performed by design engineers. An assembly simulation examines

the collision of units. These virtual units are presented as triangular meshes and they are currently solid

and undeformable in contrast to real world objects. This software simulates the natural solidness of the

units by allowing to deform the virtual objects in a natural manner. To do this, a Laplacian mesh editing

scheme has been implemented. Laplacian mesh editing allows to deform 3D objects while their surface

details are preserved. Detail preservation is an important feature because it allows the simulation of real-

istic deformations.

The thesis focuses on examining the effects of different weighting schemes for a Laplacian mesh editing

method. This method supports the assembly simulation which is performed during the phase of construc-

tion in automotive design. Thus, it has been adapted to the special requirements of such an application

by the use of different weights. The deformations are computed by the help of a minimisation method.

The present work describes the usage of alternative weights within these minimisation and its effects. In

addition, an automatic weighting method has been developed that allows rapid editing tasks.
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Zusammenfassung

Zusammenfassung

Diese Diplomarbeit ist in Kooperation mit DaimlerChrysler entstanden. Es wurde eine Software entwick-

elt, die Montagesimulationen, welche von Konstrukteuren durchgeführt werden, unterstützt. Die Monta-

gesimulation untersucht die Kollision von Bauteilen. Diese virtuellen Bauteile bestehen aus Dreiecksnet-

zen und sind im Gegensatz zu den echten Bauteilen fest und undeformierbar. Die Software simuliert eine

natürliche Festigkeit der Bauteile, indem sie es dem Nutzer ermöglicht die Bauteile in natürlicher Art

und Weise zu verformen. Um dies zu verwirklichen, wurde ein auf dem Laplace-Operator basierendes

Dreiecksnetzeditierungsprogramm implementiert. Dieses ermöglicht die Deformation von Dreicksnetzen,

wobei die Oberflächendetails der Objekte erhalten bleiben. Diese Detailerhaltung ist ein wichtige Eigen-

schaft, denn sie erlaubt die Simulation realistischer Verformungen.

Diese Arbeit beinhaltet eine Untersuchung der Auswirkungen von Gewichten innerhalb der Methode zur

Deformation von Dreicksnetzen, die auf der Verwendung des diskreten Laplace-Operators basiert. Diese

Methode soll die Montagesimulationen in der Konstruktionsphase der Fahrzeugentwicklung unterstützen.

Die Methode wurde an die gegebenen Anforderungen angepasst, indem verschiedene Gewichtungen

eingesetzt wurden. Die Deformationen werden mit Hilfe eines Minimierungsverfahrens ermittelt. Die vor-

liegende Arbeit beschreibt den Gebrauch unterschiedlicher Gewichtungen innerhalb dieser Minimierung

und deren Auswirkungen. Desweiteren wurde eine automatische Gewichtungsmethode entwickelt, die

eine besonders schnelle Bearbeitung von Objekten ermöglicht.
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Chapter 1 - Introduction

1 Introduction

This work has been written in the virtual reality competence center of the DaimlerChrysler research and

technology department in Ulm, Germany. It starts with an introduction of the topic and a description of

the assignment of this diploma thesis. Followed by a description why this thesis has been written, the

programming task according to it is clarified. Then, an explanation is given about the methods that have

been chosen. The chapter closes with a transition to the next section that takes a look at the related work

of other international scientists.

The assignment of this diploma thesis is to describe the usage and effects of weighting functions or scalar

weights in Laplacian mesh editing. The following chapters explain what Laplacian mesh editing means

and why and where it is used. In addition the impact of weighting is described in detail. But first, it is

necessary to explain the basic idea of this thesis. There are two aspects that have to be considered. On the

one hand, there was the need for a software that supports the manufacturing process at DaimlerChrysler.

On the other hand this thesis contains a scientific draft about weighting in Laplacian mesh editing. First,

the conditions for industrial application are described and then, the scientific aspects are to follow.

1.1 Industrial Application

The research and technology department in Ulm is committed to develop applications which support the

manufacturing process of DaimlerChrysler. Many steps in the manufacturing process are assisted by VR1

applications. One of these steps is the assembly of the vehicles. Looking under the bonnet of a modern

car and comparing it with pictures of old ones shows that these days all units are arranged in a highly

compact manner. There is nearly no free space between the single units and every part fits perfectly

into the engine compartment. By constructing all units with the help of computers it is easy to arrange

them compactly. All units exist as virtual models, that can easily be translated and rotated until they are

arranged as intended. Reservoirs and containers can be formed in order to fill spaces between solid units.

The problem arises by leaving the virtual environment. It is necessary to check whether it is possible

for a mechanic to mount and unmount the units in the developed arrangement. This mounting task has

to be simulated as well. The design engineers have to examine the feasibility of the arrangement they

created. They are supported in their work by a VR software framework called “veo”. With the help

of this software, it is possible to check the mounting and unmounting of units in a virtual environment.

Based on OpenInventor (see [Wer93] as programming guide), “veo” provides a basic 3D scene viewer

and different possibilities to change the appearance of the 3D objects like setting lights and materials. As

mentioned, the position and orientation of the objects can be changed. The objects’ data are represented

as triangulated meshes. There is an extensive multi user support, so that the software can be used in

different working environments like desktop, CAVE and holobench, even at the same time. It builds the

so called VR framework, because it provides all necessary basic features for working in a virtual environ-

ment. To adapt the software to special tasks, it is extended by a module system. Every additional feature
1virtual reality
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Chapter 1 - Introduction

is developed as a module. This makes the software very flexible and easily extendable.

One of these modules simulates the assembly in car manufacturing. There are two parts, a static collision

detection and a physical contact simulation. The collision detection checks whether two units penetrate

each other by using a bounding volume hierarchy method. Bounding volume hierarchy method means,

that the units are approximated by simple bounding volumes. These bounding volumes can be spheres or

boxes. They should have a simple shape in order to simplify the penetration examination. The first bound-

ing volume encases the whole unit. Such a box approximates the shape of the units very fundamentally.

Further, the two bounding boxes are examined, whether they penetrate each other. If they do not penetrate,

it is obvious that the units do not collide. But an overlapping of these volumes does not stringently result

in a collision because the volumes only approximate the true shape. Therefore, the boxes are subdivided

in order to approximate the shape more precisely. This subdivision is predefined by a hierarchy. During

the algorithmic processing, all objects are examined in pairs, to determine whether their bounding boxes

penetrate each other. In case of a penetration, the test is continued in smaller bounding volumes until the

true shape level is reached or there is no more penetration. This method is called oriented bounding box

approach, if the bounding boxes are oriented in order to keep their volume as small as possible. More de-

tails about collision detection and the bounding volume hierarchy method can be found in [KZ03, Loc04].

The contact simulation controls the movement of two colliding objects. Two colliding objects are not just

blocked, the system tries to continue the translation given by the user and rotates or shifts the object so

that the two objects can pass each other. This simulates a realistic contact behaviour and can be explained

with a simple example. If an oblong object like a screwdriver is dropped on a table and the tip of it touches

the table first, then the screwdriver is rotated into horizontal position and the remainder of it touches the

table. The contact simulation computes the physically correct movement of the screwdriver by comparing

the contact points with the centres of gravity of the objects. See the thesis of Matthias Buck [Buc99] for

details.

This software is used to check the assembly before the real cars are actually constructed. But the simu-

lation has one negative aspect. All virtual objects are rigid, in contrast to real world objects. The prime

example is the water tank for the wipers. This is a large plastic unit that can be pressed by human hands

without great effort. A mechanic can easily deform it on mounting, if the gap where it has to be pushed

through is too small. But in the simulation, such a task would fail because of the rigidity of the virtual

objects. There are several ideas to avoid this problem. The first and most straightforward idea is to work

with deformable objects in the VR environment and adopt the collision detection to these deformable ob-

jects. Collision detection of deformable objects is currently mainly used for animations [JP04, HTK+04],

that neither require real-time response nor high precision. The state of the art in collision detection of de-

formable objects can be found in [TKH+05]. Teschner et al. present topical applications from cloth and

surgery simulation and show the differences to collision detection algorithms for solid objects. Cloth and

surgery simulation are beside animation the two main applications for collision detection of deformable

objects. All applications are examined according to collisions and self collisions, pre-processing, collision

information and performance. In cloth simulation, it is absolutely necessary to consider self collisions,

because clothing wrinkles and is stitched together. In order to simulate the behaviour of cloth in real

environments, physics have to be considered. Due to this fact, the costs of such a task rise extremely,

because even parts of the same object have to be examined whether they collide. In surgery simulation,

- 2 -
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the contact of surgery tools with deformable tissue and to that, simulating tasks like cutting have to be

developed. Additional information about the stiffness and the maximal penetration depth is necessary in

order to create realistic deformations. This information has to be defined and additionally be stored for

each object. In a pre-processing step, the data can be arranged in order to speed up the system. Here,

bounding volume hierarchies can be constructed. However, it is difficult to construct bounding volumes

for deformable objects, because the shape changes dynamically. Therefore, it is necessary to construct

hierarchies which can be updated very fast. Alternatively to the bounding volume hierarchies, there are

several other methods like stochastical ones which only approximate the deformation instead of calcu-

lating it exactly. In addition, there are approaches using distance fields. A distance field D : R3 → R
defines surfaces as a zero level set S = {p‖D(p) = 0}. The surface is defined by a number of points p

that have the distance D(p) = 0. This definition requires a huge amount of data points, since the areas

surrounding the surface have to be stored, too. In order to decrease the number of discrete points only

a small band around the shape is considered and the fields are stored in data structures like octrees or

binary space partition trees. Using distance fields makes it easy to recognize collisions, but there is great

effort necessary to update the distance fields after deformations. For every application, there are many

parameters that can be changed in order to enhance the system. There is no nostrum for all applications,

and the number of parameters grows with every new feature. This rapid increase of complexity arrests

the development of an useful system for assembly simulations.

Regarding the assembly simulation, a change of the bounding volume hierarchy algorithm in the existing

method would be necessary and therefore, the whole contact simulation module has to be redone. This

would exceed the extend of a diploma thesis. There is a doctoral thesis in progress at DaimlerChrysler

about the assembly of flexible wires and cables. It was determined that such a task would be too extensive,

because every object would in addition need properties about its stiffness that do not exist yet. This is

why there was no way to develop a system which is able to decide, whether a mounting task can definitely

be done.

But the user knows intuitively the rigidness of the units he reviews for mounting. Out if it, an approach

has come into existence that gives the user the possibility to deform these objects like a mechanic can

press the water tank. The user can easily estimate the flexibility of a unit and keep full control over the

assembly process, without the need to change the objects in a CAD environment, he can deform them

within the VR system. Such an enhancement would save a lot of time, as the deformation functions are

developed in order to serve the purpose of simple and rapid mesh editing. In order to enable a rapid pro-

totyping, a STL export has been realised. The STL format is an ASCII file mainly used in manufacturing.

It contains a simple list of all triangles in Cartesian coordinates. Most rapid prototyping machines use it

as an input, and all CAD programmes can read it, too. This way, the deformed object can be exported

and be sent back to the CAD environment, or transferred directly to a machine that creates a prototype

which can be checked by the mechanic for mounting. According to this task, the focus was directed on a

simple modelling approach that fulfils the conditions from Table 1.1. The user should be able to change

the objects on vertex level, but at the same time should have the possibility to deform large surface areas.

In addition, the user should be able to modify the surface without a long period of vocational adjustment.

This is the most challenging part, because
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Modelling conditions

High precision

Intuitive user interaction

Fine and smooth deformations

Flexibility

Full control

Measurement feedback

Fair surface design

Table 1.1: Modelling conditions

“a complex mathematical framework has to be hidden behind an intuitive modelling

metaphor.” From [BK04a, p.1].

Here, the thesis’ scientific work truly begins.

1.2 Scientific Application

The first task was to find out which existing modelling approaches fulfil the listed conditions. Looking into

history of deformation tools leads directly to the free form deformation idea. Based on this idea, which

is described in detail in Section 2.2, there are several current developments that may comply with the

requirements. The basic free form deformation is a volume-based deformation approach. This means that

an approximating simple volume is generated, which can be deformed by the user. The deformation of

this volume is interpolated and adapted to the detailed shape. This approach does not fulfil the condition

of direct manipulation. Due to this fact a direct vertex manipulation method has been developed. In

general, surfaces are represented as a set of points or vertices which can be connected to a mesh. This

method allows to transform single vertices by drag and drop, while the connections between the vertices

are retained. However, this approach lacks the possibility of global deformations. It should be possible to

easily deform large regions of the surface. Therefore, a region selection mechanism has been developed.

The performance of editing the selected region depends on the number of surface points in the region.

Hence, it is necessary to approach the need of transforming each point discretely. Combining this need

for regional deformations and the aspect of exact vertex editing, there are several alternative approaches

available. The multiresolutional shape editing approach bases on the subdivision of the surface. In this

approach the surface mesh is subdivided into a coarser one, which contains less points. Through this

reducing of the amount of vertices, the shape can be edited interactively. However, this approach does

not consider the connection of the vertices during the subdivision and hence, artefacts can appear if

strong details like sharp features are deformed. The models of the units for the assembly simulation

contain such sharp features. Therefore, a method called Laplacian mesh editing was chosen. It is a

detail preserving modelling approach that complies with the intended properties. It is based on the use of

differential coordinates which are an implicit description of the surface. This implicit description contains
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information about the details of the surface. The detail of a surface can be defined as the difference of

the surface and a smoothed version of the surface. After transforming a part of the shape, the complete

deformed shape is reconstructed using the detail information from the differential coordinates. This

reconstruction is realised as a minimization that can be controlled by weighting functions.

This approach was implemented and refined focusing on the weighting possibilities. The idea was to adopt

and extend the Laplacian mesh editing scheme, in such a way that both fine and large-scale deformations

are possible. Therefore, different weighting schemes are examined and constructed. Laplacian mesh

editing is an approach for fair surface design. This means, the deformation should always keep the mesh

as fair as possible. Fair surfaces are surfaces that do not contain holes, they are pleasing to the eye or

mind especially because of fresh, charming, or flawless quality. To achieve this, several constraints and

boundaries have to be added to the implementation. This approach is also called boundary constraint

modelling. The boundaries are presented as an energy function of the shape. The energy is zero if the

shape is unchanged. Deforming the shape leads to an increase of the energy, that is comparable with a

tension. Minimizing the energy function avoids such tensions and keeps the surface fair.

Another aspect to be kept in mind is that there was no need for ad-initio modelling. Ad-initio modelling is

the creation of a model from the beginning. In general, the user can build a simple shape and manipulate

this shape until it is a model. This is comparable to a sculptor, who starts with a block of stone or wood.

In this case, there is always a complex 3D shape available that needs to be deformed. These shapes are

created by laser scanning devices or, like in the industrial application case, they derive from CAD data.

With the use of Laplacian mesh editing it is not possible to deform a basic shape like a sphere in order

to receive a complex structure because the tessellation structure is retained. There are several approaches

that enable ad-initio modelling, but for this reason they are not considered in this thesis. In contrast, the

Laplacian mesh editing scheme bases on the preservation of details through an implicit description of

the connection of the vertices. Not their absolute positions are decisive, but their differential coordinates.

With the help of the discrete Laplacian operator of a mesh, which is used for the differential representation

of the mesh, an energy function is built. Minimizing this function results in a fair surface editing tool. A

precise definition of differential coordinates can be found in Section 3.3, and a detailed explanation of

how the Laplacian mesh editing scheme is build up follows in Section 3.6. The Laplacian mesh editing

can be controlled by weights. The possibilities and effects of weighting are examined in this thesis.

Firstly, an intensive weighting scheme is presented, that gives the user full control over the transitions

between deformed and undeformed regions of the surface. Further on, it can also relieve the user from

this controlling task by automated weighting. The automatic weighting enables a fast and simple editing

of large areas.

1.3 Overview

The remainder of this thesis is built up as follows. At first an overview about the related work is given

and the state of the art in Laplacian mesh editing is presented. In this chapter, all different approaches in

shape modelling are considered, but the focus is laid on systems that are similar as the one that has been

developed according to this thesis. After that, a chapter explaining the mathematical background follows.

- 5 -



Chapter 1 - Introduction

It is suggestive to define some mathematical expressions and repeat some basics in order to support the

understanding of the whole system. In Chapter 4, the implemented methods are described. Reasons are

given, why solutions have been chosen and the purposes of each method is described in detail. Then a

chapter follows containing explanations of effects and meanings of weighting in Laplacian mesh editing.

This chapter depicts the impact of several weights and presents their intention. The thesis closes with a

conclusion and an outlook on further work.
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2 Related Work

2.1 Introduction

In the following section, a review of existing systems and approaches is given. The implemented system

presented in this thesis unites several different methods for mesh deformation and so do other approaches

as well. Therefore, this chapter is arranged according to these different methods and for this reason, some

works will be mentioned multiple times. As stated in Chapter 1, there is a need for an intuitive shape

editing tool in order to increase the flexibility of the interaction, so that the design engineers can optimise

the assembly. At first, the free form deformation (FFD) technology is regarded. Being one of the old-

est methods in 3D mesh manipulation, it has been further developed during the last two decades and all

recent frameworks base on the ideas of this approach. The next part discusses several drafts using the mul-

tiresolutional approach in shape editing. Further, other existing Laplacian mesh editing frameworks are

presented. After dealing with the drawbacks of Laplacian mesh editing and with some other approaches

that solve or elude these problems, an overview on similar frameworks for shape editing in general will

follow. Within all the upcoming paragraphs, the different approaches are ordered chronologically accord-

ing to their historic emersions, so that the reader is introduced to the development from one development

stage to another.

2.2 Free Form Deformation

In this section the oldest approach of shape manipulation is introduced. It all starts with “Global and local

deformations of solid primitives”, presented by Alan Barr [Bar84]. When regarding global transforma-

tions, such as scaling and rotating, the existing transformation matrix does not change. Barr introduces

the application of global transformations as local deformations of simple objects. Therefore, he modified

the transformation matrix for each vertex. The following explains this in detail. Every deformation is

expressed as a transformation

(X,Y, Z) = F (x, y, z),

where x, y and z are the vertex coordinates of the undeformed object and X,Y, Z are the coordinates of

the deformed object. For example, a scaling operation is expressed by

(X,Y, Z) = (sxx, syy, szz),

with sx, sy and sz as the scaling coefficients for the three dimensions. In order to realise a tapering along

the z-axis deformation the scaling along the x- and y-axes is made dependent of the z value. Thus, we

can write

(X,Y, Z) = (rx, ry, z),

where r = f(z) is a linear or non-linear function. In the same way, Barr introduced deformations such as

twisting, bending and the shown tapering. In addition, a Jacobian matrix exists for each of these deforma-

tions containing the first derivatives of the deformation function. Barr found out that there is a coherence
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of local and global deformation through the Jacobian matrix and thus, the normals can be calculated

easily. Barr found formulas for the mentioned simple deformations. All these deformations can be com-

bined hierarchically to complex operations. By multiplying the transformation matrices of each vertex,

complex shapes can be constructed in an intuitive manner, at least by mathematicians, because Barr’s

implementation lacks a graphical user interaction. The user must define the deformations mathematically.

In order to enhance the user interaction, this approach was refined by Karen Singh and Eugene Fiume in

1998 [SF98]. Here, the user is able to draw the curves directly onto the complex surface, like winding

a wire around the object. These wires can now be transformed and the underlying surface is deformed

respectively. In addition, the user controls the range of the wire deformation, in order to get smooth or

sharp features depending on his intention. The advantage of this system is that interaction is highly intu-

itive. It is a natural working behaviour to pull and push parts of the object like in clay modelling. The

immediate visual feedback of the deformation makes the modelling task even more realistic.

In 1986, the free form deformation (FFD) approach was introduced firstly by Sederberg and Parry [SP86].

(a) Bunny with lattice (b) Deformed lattice and bunny

Figure 2.1: FFD on the bunny model with a regular lattice

This approach resembles the one of Barr, but Sederberg and Parry build up a lattice around the object with

a small amount of lattice points. The user can translate the lattice points and the object is deformed ac-

cording to the deformation of the lattice. Hence, Barrs curves are extended to a lattice or a grid. This

grid encloses the whole object, and hence, the deformation is detached from the object’s complexity. The

user can deform arbitrary objects using the enclosing lattice. Sabine Coquillart extended this approach by

removing the constraint that the lattice had to be rectangular [Coq90]. She introduces cylindrical grids,

that approximate spherical objects much more precisely. She also introduces the tool metaphor. The user

can define own grids and use them like a sculpting or pulling tool. The tool metaphor will be explicitly

discussed later in this chapter. MacCracken and Joy extended the approach even more, so that the lattices

can have an arbitrary structure [MJ96]. In order to obtain this, they introduced the use of the Catmull-

Clark subdivision scheme to adjust the lattices to the objects. The FFD modelling technique is available

in recent commercial modelling tools. See Figure 2.12 as an example for FFD. The left image shows the

undeformed bunny model and a lattice surrounding it. In the right image the lattice is deformed and the

bunny is deformed accordingly.
2Coloured images can be found in Appendix: Colour plates
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All these lattice-based approaches suffer from missing precision. It is not possible to map specific points

directly to a new position, only if they are lying on the lattice. But, laying all points on the lattice con-

tradicts with the FFD approach making the deformation independent of the 3D shape. Another problem

with FFD is creating flat surfaces. To do this, the user must change the lattice points in a way that is not

intuitive or needs to control an overwhelming amount of parameters. This is clearly shown in Figure 2.2:

the dots show the control points. The dashed line shows the original surface and the solid line shows the

deformed surface. The user has to move the control points to an apparently illogical position. Hsu et al.

extended the FFD approach and modified the user interaction [HHK92]. In their system the user moves

some object points directly and the system finds the corresponding lattice point transformations leading

to the desired deformation. This point-based approach is called direct manipulation FFD.

Another aspect that yet has not been considered are physical parameters. The models of the units in the

(a) flat control points

(b) flat surface

Figure 2.2: Problem of flat surface with FFD, courtesy:[HHK92]

engine compartment are constructed accurately, and therefore, the deformation that is applied in order to

examine the assembly should retain the volume of these objects. There are several applications where the

models should only be deformed as if they were elastic as for example vulcanised rubber. Rubber can

be bent and stretched but its volume stays constant. Borrel and Rappoport et al. inserted the physically-

based modelling aspect to FFD [BR94, RSB95]. They extended the FFD with an energy function in order

to achieve a constant volume and surface energy. The surface energy is a parameter for the shape of the

object, and for this reason, edges and wrinkles within a smooth shape caused by the deformation opera-

tion are avoided. This idea makes the modelling more realistic and more practical for an industrial usage.

Thus, the surface editing is considered fair.

The physical aspect has been examined by other authors as well. However, Welch and Witkin only worked

on triangulated surfaces [WW94, WW92]. They modified the mesh connectivity in order to minimise the

mesh energy. This enables changing the topology of the manipulated objects, in contrast to Hirota et al.
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who maintained the triangulation using a multilevel representation [HML99]. In recent work, Bendels

et al. give the user the opportunity to adjust the smoothing behaviour [BKS03]. They utilise the same

direct handle transformation scheme as used in the implementation presented here. They give the user

the possibility to choose the smoothing function for the neighbourhood, however in this application, the

smoothing function is fixed to the Gaussian. They extend the system with a so called occluder [BK03a]

and they describe a complete editing environment in [BKK04], where they construct a workbench for

virtual modelling. The user manipulates the objects with a PHANTOM [Pha] device, while holding the

virtual object with the hand. The PHANTOM is a kind of pen that gives haptic feedback. The effect

of holding is realised by projecting the object onto a semi-transparent glass plate. The user, who wears

shutter glasses for stereoscopic viewing, can see his own hand holding a virtual object. With the use of

the PHANTOM device, the user can transform single vertices on the surface while the neighbourhood of

the vertices is interpolated by a smoothing function as explained. The direct handle transformation with

neighbourhood smoothing is used in a similar way in the work of Pauly et al.[PKKG03]. Here, a special

hybrid point-sampled geometry is used, built

“by combining unstructured point clouds with the implicit surface definition of the moving

least squares approximation.” From [PKKG03, p.1].

This enables the utilisation of implicit and parametric surfaces, and thus, the application is no more lim-

ited to connected meshes.

These extensions of the FFD method show that the use of energy functions is essential for fair surface

editing. There is a need for global parameters that avoid the destruction of the basic shape. This idea of

global control is used in nearly all up to date mesh editing systems. Many of them use subdivision sur-

faces and multiresolution methods. We will take a closer look at multiresolution methods in Section 2.3.

However, there is one recent work using classic FFD methods made by Tao Ju et al. [JSW05]. A classical

control mesh divides the shape in coarse areas. These are deformed and the deformation is propagated

to the original shape by using mean value coordinates. The mean value coordinates define a coordinate

as the mean of its direct neighbours [Flo03]. These neighbours build the so called one-ring around the

vertex. This method can also be used to interpolate 3D textures if a part of the mesh is cut off.

FFD is also used in commercial systems. Milliron et al. describe a software framework using

FFD [MJBF02]. The authors work for Pixar and focus on commercial applications with results enhancing

animation creation.

2.3 Multiresolution Editing

While the described energy minimisation and FFD methods work well for smooth surfaces, they have

drawbacks for manipulating objects with a high detail level such as those acquired from scanning devices

because of the missing detail preservation [GSS99, KCVS98, ZSS97]. While the interpolation of defor-

mations is computed according to the manipulation of a coarse lattice, the details of the shape can not

be stored in an efficient way and hence, they may get lost during mesh editing. In order to overcome

this drawback, multiresolutional shape editing is introduced. Matthias Eck et al. [EDD+95] describe
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a method for building multiresolution representations of arbitrary meshes. Based on this work Denis

Zorin, Peter Schröder and Wim Sweldens developed a first multiresolution mesh editing system using

subdivision surfaces in 1997 [ZSS97]. The idea of multiresolutional mesh editing is to split the complex

object into a coarse base mesh and its detail levels. For each coarseness level a description of the details

exist. The multiresolution technique is known from digital signal processing and uses wavelets. Gabriel

Taubin was the first author to use wavelets on 3D meshes [Tau95]. He noticed that the discrete surface

are signals and applied discrete Fourier analysis on them. The mesh is interpreted as a signal which can

be decomposed into its frequencies. Taubin reduces the fairing problem of scanned 3D mesh data into

low-pass filtering. In addition, he published an survey on signal processing of meshes [Tau00]. Zorin et

al. combined this technique with FFD to achieve a detail preserving mesh editing tool. The manipulation

is done in the classic FFD manner, but the user is allowed to choose the detail level. If only the base

mesh is deformed, all the details, the higher frequent parts of the mesh, are retained. The advantage

with respect to the classic FFD is the detail preserving low level editing that allows the manipulation of

complex shapes with a large number of vertices. Deformations of highly detailed surfaces is not possible

with FFD at interactive rates.

This basic approach of multiresolutional shape editing has been extended by several authors during the

last decade. Leif Kobbelt et al. [KCVS98] developed a modelling system for arbitrary meshes by com-

bining mesh hierarchies, local frame coding and multi-level smoothing. Guskov, Schröder and Sweldens

[GSS99] proposed another system for arbitrary meshes. They generalised basic signal processing tools

to irregular triangle meshes. Through the combination with mesh simplification tools in order to build

subdivisions, they developed different applications including a mesh editing tool. Another approach was

presented by Seugyong Lee in 1999 [Lee99]. He mapped the editing area onto a 2D rectangle and inter-

polated the editing information over this rectangle. For embedding the editing region, harmonic maps are

used and the interpolation is done with multilevel B-splines.

Multiresolution editing is a very powerful tool in combination with subdivision surfaces. Much work has

been done in the past ten years. [Zor05] gives a very good review about the state of the art in modelling

with multiresolution subdivision surfaces. It has been presented by Denis Zorin at the tutorials session at

the Eurographics conference in Dublin 2005. Subdivision surfaces are very popular for animation tasks.

The famous animated motion pictures Geri’s Game, A Bug’s Life, and Toy Story 2 have been created

using this technique.

The drawback of multiresolution editing is pointed out by Kun Zhou et al. [ZHS+05]. He argues that

through the independent manipulation of the displacement vectors, indicating the deformation at each ver-

tex, artefacts can appear. This may happen, especially in strongly deformed regions, because the details

are not connected and hence, they are not preserved uniformly over the whole surface. If the deforma-

tion of the base mesh is too strong, the details will not be reconstructed at their correct position. In

order to avoid this problem, mesh connection is considered. To do this, Laplacian mesh editing has been

developed.
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2.4 Laplacian Mesh Editing

The history of Laplacian mesh editing starts with the paper of Marc Alexa about the use of differential

coordinates for mesh morphing and deformation [Ale03]. He introduces the differential (also called Lapla-

cian) coordinates δ of a mesh and describes how to apply them especially for morphing. The differential

coordinates of a mesh can be interpreted as the difference of the original mesh and a smoothed version

of this mesh. As mentioned in 1.1, these coordinates describe the detail of the surface. Like in the mul-

tiresolutional approach, the details are stored separately, and only the smooth base mesh is processed. In

addition, Alexa also introduces the potentials of differential coordinates in mesh editing. This potential

was first used for interactive editing in the work of Lipman et al. [LSCO+04]. They developed a system

that allows the user to deform 3D shapes at interactive rates while the detailed structure of the object is

maintained. Hence, the differential coordinates δ are defined as the detail and constructed as a transfor-

mation of the absolute coordinates ~p; they establish a linear system that describes the transformation of

the absolute coordinates of the mesh. They are defined as the difference of a vertex and the mean coor-

dinate of its one-ring neighbours. A multiplication of the Laplacian matrix with these coordinates leads

to absolute coordinates of the mesh. The Laplacian matrix is build up from the adjacency matrix and the

valences of each vertex and therefore, it is quite sparse for large meshes. Then, it is reduced to the size

of the ROI3. The ROI is determined by the user and defines the region on the surface where the deforma-

tion takes place. This localises the deformation. Once ROIs are introduced, the matrix is extended with

constraints that depend on the fixed vertices that stay at their original position and on the handle vertices

that are transformed by the user. This allows the reconstruction of the edited surface by solving the linear

system

L~p = δ (2.1)

for each dimension x, y and z. This equation system reconstructs the local details, if it is solved by a

least squares minimisation. To reach interactive rates, the solution of the linear system is precomputed

with a Cholesky factorisation that splits the matrix in an upper and a lower triangular matrix. This decom-

position is done once, while the new coordinates are computed very fast by a simple forward and back

substitution for each dimension.

Olga Sorkine et al. [SLCO+04] describe several alternative applications with Laplacian coordinates such

as coating transfer and transplanting surfaces. All applications base on the solution of a sparse linear

system. There are two more publications [Ale05, Sor05] that describe the same technology as a tutorial

and a state of the art report.

As mentioned in the last section, the problem of multiresolution editing is the lack of connectivity of

the detail structures. In Laplacian mesh editing this drawback is overcome by the definition of the dif-

ferential coordinates. Due to the fact that the differential coordinates approximate the second derivative

of the surface, the minimisation equation presented by Sorkine et al. is a discretisation of the Poisson

equation [SLCO+04]. The solutions of the Poisson equation, which is a generalisation of Laplace equa-

tion, are harmonic functions. Harmonic functions are smooth in their boundaries, and are therefore well

suitable for fair surface interpolations. Yu et al. developed a similar method as Sorkine et al., but they
3region of interest
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started from the opposite side [YZX+04]. Their equation system is different. They do not modify the

Laplacian matrix, but make some changes on the right side of the equation. Instead of attaching the con-

straints to the Laplacian matrix, constraints are formulated as boundary conditions on the right side of the

equation. These boundary conditions are defined by the euclidean distances in the editing ROI, which is

determined by the user. This approach has been extended with the so called harmonic guidance by Zayer

et al. [ZRKS05]. Harmonic guidance means that the propagation of the boundary constraints is controlled

or guided by a harmonic map. Hence, the influence is not any more only dependent on the euclidean dis-

tance, but the shape structure is considered as well. This has very positive effects on branched shapes,

like a cactus or an open hand. The harmonic map makes it possible to bend only one branch instead of all

neighboured ones. In this thesis, this problem is avoided by the neighbourhood selection scheme. Here,

the ROI is defined by a combination of euclidean distance and mesh connectivity. Every vertex whose

position will be reinterpolated has to be near enough to the directly selected ones and there must be a con-

nection to all other vertices inside the ROI. This selection scheme avoids the deformation of neighboured

but not connected regions. This raises the realism of the deformations. If there is a unit with several arms,

it is natural that the deformation of one arm does not influence the other ones.

Laplacian mesh editing acts on objects in case of rotations like if someone wrings out a sponge, involv-

ing a loss of volume on rotations. Hence, Zhou et al. [ZHS+05] introduce volumetric details in order to

improve volume preserving. This idea is based on the work of Mario Botsch and Leif Kobbelt who used

volumetric information in multiresolutional mesh editing in order to avoid self-intersections and make

bending more natural [BK03b]. The surfaces are extended with an tetrahedral submesh which is addition-

ally considered in the interpolations. However, this extension increases the amount of considered vertices

strongly and so the computation time rises dramatically.

In addition, there are three further approaches of Mario Botsch and Leif Kobbelt that introduce alterna-

tive applications using the Laplacian. In the first one [BK04b], they describe a framework for real-time

free-form modelling. Here, also an energy function is used in order to keep the shape deformations fair.

They write that the order of the energy function controls the stiffness of the deformation. Therefore, they

use the k-th power of the Laplacian operator in order to realise different smoothness of the boundary

conditions. This approach needs to solve

Lk~p = δ, (2.2)

in a least squares sense. There are three cases for the energy functional examined:

“. . . for k = 1 this equation characterizes membrane surfaces which minimize surface area,

for k = 2 it characterizes thin plate surfaces which minimize surface bending and for k = 3

we obtain surfaces that minimize the variation of linearised curvature.” From [BK04b, p.3]

These higher order Laplacians are defined recursively, as described in [KCVS98]. The discretisation of

the Laplacian was implemented according to Meyer and Desbrun et al. [DMSB99, MDSB02], using the

cotangent weights. Through this higher order definition, it would be necessary to extend the one-ring

around a vertex defining the differential coordinate to a k-ring and hence, the computation is more time-

consuming.

Their second approach [BK04a] combines the Laplacian mesh editing scheme with multiresolution. The
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editing operations are executed on a smooth base mesh and details are added afterwards. To achieve a

symmetric matrix even with higher order Laplacian operators, the smooth base surface is remeshed. To do

this, they use a simple remeshing approach that uses the precomputed cotangent weights. This approach

is not accurate, but because of its applying on the smooth base, there is no need for a high precision. For

solving the system they use a direct solver with a Cholesky decomposition as well.

In their third approach, Botsch and Kobbelt [BK05] introduced the use of radial basis functions in the

field of real-time shape editing. Radial basis functions are a tool for interpolation of data streams. They

defined a space deformation function by a vector valued radial basis function

d(~p) =
∑

j

wjϕj(~p) + ψ(~p),

where ϕ(r) = r3, ψ is a polynomial of low degree and wj are weights, that are computed to achieve a

smooth interpolation. This function is the replacement of the discrete Laplacian operator in the implemen-

tation according to this thesis. Through the use of a global radial basis function instead of the Laplacian,

a dense linear system is built. Botsch and Kobbelt overcome this drawback, through previous calculation

steps and a transfer of computations onto the GPU4. Their approach also combines the aspects of exact

control and high quality. Thus, it is possible to change the position of every point exactly on the one hand,

and on the other one the transformation of large parts of the objects keeps the surface structure. This is

the so called simplest shape principle which is a base of fair surface design. Botsch and Kobbelt see the

drawback of Laplacian mesh editing in the fact that,

“. . . their computational effort and numerical robustness are strongly related to the quality

and complexity of the tessellation”. From [BK05, p.1]

The advantage of radial basis functions is the independence from the data structure. The data can be

point sampled or a mesh. It works fine for scattered data, because holes or degenerated triangles are

smoothed. The same authors wrote a paper on removing degenerated triangles [BK01] and this confirms

that their method is prone to anomalies. Since we work with CAD data, there was no need for radial

basis functions because the tessellation of the meshes is controlled by the user and depends on the export

from the CAD software. That is the main reason why the Laplacian scheme has been used here instead

of a radial basis function, which would be the best alternative for this application. In the implementation

presented in this thesis, the higher order boundary constraints are compensated by the weighting of the

fixed and handle vertices. See Chapter 5 for details. This makes the computation faster and because the

industrial application aims on doing fine deformations, the first order Laplacian has been chosen.

2.4.1 Drawbacks

The drawback of Laplacian mesh deformation is the rotation invariance of the differential coordinates. In

Section 4.5 we examine this problem in detail. There are two approaches that avoid the problem by using

alternative coordinates. Alla Sheffer and Vladislav Kraevoy introduced pyramid coordinates [SK04].
4graphics processing unit
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These coordinates are rotation invariant, so the details of a surface are maintained also during strong

rotational deformations of the shape. This method leads to good looking results, but the authors make no

clear statement about the efficiency and the runtime of their algorithm. The reconstruction of the mesh

from their coordinates has a quadratic complexity. Lipman et al. present rotation invariant coordinates

that are linear [LSLCO05]. They split the differential description of the mesh coordinates in two parts,

the first one defines the tangential part and the second one the normal part. Their reconstruction scheme

is based on the solution of two sparse linear systems. Even though their coordinates are linear and the

rotations lead to very good results, they also make no clear statement about the computation times of the

reconstruction. They are still able to handle tens of thousands of vertices at interactive rates, but they

do not compare with their previous work. This shows that it is necessary to have a balance between

performance and deformation quality, in relation to the intended application. In the context of this thesis,

the application aims at fine deformations and so, there is no reason to handle large rotations properly

with saving thus computational time.

2.5 Shape Editing

Several shape editing frameworks have been examined according to other aspects like the user interaction

and the data structure of the models. At first, the user interaction scheme is regarded which can be

divided in two methods. There are systems using the tool metaphor [Coq90, GM05, Ang05], and there

are frameworks using a ROI [BKS03, BK04b]. In the application in this thesis, a ROI is used in order

to give the user exact control where the deformation is to take place. The ROI is divided in three parts.

A handle region, an interpolation area and a fixed region. This subdivision enables flexible and precise

deformation. When working with a tool, the range reachable by the tool needs to be defined. In other

words, the tool has to be defined properly. The developer has two possibilities. Either he determines

a number of fixed tools that are precisely defined according to their range of influence, or he gives the

user the possibility to create his own tools. Hence, there is either a restriction because of a limited

variety of tools or an increased difficulty to manage it because tools have to be designed by the user.

Therefore, a simpler and more intuitive method such as ROI selection has been developed in order to

enable rapid working. Another reason for the selection mechanisms is the experience of the users with

CAD applications such as CATIA, which provide such selections, too. For working with tools in VR,

it is sensible to support the user with haptic feedback. Especially tasks such as pressing or pulling the

shape are hardly manageable without haptic feedback. By now, this feedback can only be realised by

special input devices such as the already mentioned PHANTOM. Enabling haptic feedback has another

drawback. The human tactile sense is much more sensitive than the visual system. While a human can

recognise only about 30 images per second, a haptic feedback device needs to work with about 1000Hz

in order to achieve a realistic simulation for the tactile sense. Due to this fact, computing the deformation

of the shape for haptics needs to be much faster than if only visual feedback is necessary. The tool

metaphor aims to copy the traditional sculpting methods. This makes shape editing more intuitive,

because it is well-known what happens if a shape is processed with, for example, hammer and chisel.
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Several practical examples can be found in the literature [BKK04, WBD02, HQ02]. At DaimlerChrysler,

the assembly simulation is done by design engineers that are trained in CAD programmes. Hence, they

are the main users of the editing software, thus we stick to selection mechanisms instead of virtual tools.

A further modelling approach is sketch-based modelling [ACOL00, HQ03]. Here, the user draws his

Figure 2.3: Sketch-based editing, courtesy: [NSACO05]

deformation intention with symbolic lines and strokes. This input can be realised by a sketch-pad or by

usual mouse interaction. These line and stroke inputs are transformed in 3D displacements by methods

from pattern recognition. Therefore, the user has to learn the meaning of the strokes in order to use

the system properly. This technique can also be used for ad-initio modelling, as in the “Teddy” system

by Igarashi [IMT99]. Olga Sorkine presents in her state of the art report [Sor05] another work she

supported, created by Andrew Nealen et al. [NSACO05]; a sketching application in combination with

Laplacian mesh editing. Here, the sketches are mapped onto the surface and another sketch draws the

intended deformation. See Figure 2.3 for an example application. The user can control the measure of

precision of the sketch by weighting. Depending on this, the drawn line will be roughly approximated

or exactly interpolated. As you can see in the figure, the main application for such sketching methods is

comic animation. In the context of an assembly simulation, the sketching does not provide the required

precision. In addition, the possibilities of visual feedback for the measure of the drawn sketches are

limited.
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3 Foundations

3.1 Introduction

What does Laplacian mesh editing mean? What is a Laplacian? What is the coherence of meshes and

graphs? How can an over-determined linear system be solved? This chapter introduces the mathematical

basics of this thesis in order to answer these questions. So as to understand the idea behind Laplacian

mesh editing, the reader is introduced to differential geometry and it is shown why the mesh editing is

named after Pierre-Simon Laplace. The differential geometry describes continuous surfaces. As differ-

ential coordinates describe discrete surfaces, this discretisation will be explained in detail. After that,

the different weighting functions for these differential coordinates are examined carefully. In order to de-

scribe the whole reconstruction method for mesh editing, some basic aspects about matrices are explained.

An outlook to eigenvalues and eigenvectors shows the potentials and limits of Laplacian mesh processing.

The chapter continues with a description of Laplacian mesh editing that explains where all the mentioned

foundations interlace, and it ends with some numerical methods for solving sparse linear systems through

factorisation and conditioning.

3.2 Laplacian

In order to explain what a Laplacian is, we have to introduce Laplace’s equation. The solutions of this

partial differential equation play a decisive role in many different fields of science, especially electromag-

netism, astronomy and fluid dynamics. They describe the behaviour of electric, gravitational and fluid

potentials. The connection between these topics and meshes lies in the fact that both are represented as

fields. In differential geometry, surfaces are described as fields. Meshes are discrete surfaces and thereby,

they can be seen as discrete fields with a finite amount of vertices. Every point or vertex has an impact on

its neighbours. Vice-versa a continuous field can be seen as a mesh or graph with an infinite number of

vertices. At first, the Laplace equation is described for continuous surfaces and then the discretisation is

explained in detail. Laplace’s equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= 0

sets the second derivative of a real three dimensional function ϕ(x, y, z) equal to zero. This is comparable

with finding inflection points in a curve. The second derivative of a surface describes the curvature.

Setting this derivative equal to zero, the solutions will be points with no curvature. This equation is often

shortened to

∇2ϕ = ∆ϕ = 0 (3.1)

or

div grad ϕ = 0,

where ∆ is the Laplace operator, which is defined as the divergence of the gradient of a scalar field or

potential. The Laplace operator is also called Laplacian. All functions ϕ that fulfil this equation, that
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are continuous and whose first and second partial derivatives are continuous too, are called harmonic

functions or Laplace differential functions. Harmonic functions are analytic and hence, they can be

locally expressed by Taylor series.

We regard the Laplacian of a surface instead of a function ϕ and therefore, the Laplace-Beltrami operator

K(~pi) = lim
r(A)→0

gradA
A

, (3.2)

withA as an infinitesimal area around a point ~pi and r(A) as its diameter, is introduced. As the divergence

is defined as a volumetric differentiation, the limit from (3.2) can be interpreted as the divergence of

gradA. Due to this reason, the Laplace-Beltrami operator is simply the Laplace operator for manifolds

and in Euclidean spaces they are identical. According to Meyer et al. [MDSB02], the Laplace-Beltrami

operator can also define the product of the mean curvature and the surface normal at a given point on the

surface. This product is the so called mean curvature normal κH~n. It is constructed by

K(~p) = 2κH(~pi)~ni = lim
r(A)→0

gradA
A

. (3.3)

The gradient of the area A directs in the normal direction and can be interpreted as the inclination of

the surface, and hence as the first derivative. Computing the limit of this division is comparable with a

differentiation. Thereby, the mean curvature normal κH~n can be interpreted as the second derivative or

the Laplacian of the surface. A detailed description of this derivation can be found in [DMSB99].

The mean curvature can also be expressed as the limit of a curvilinear integral

κH(~pi)~ni = lim
|γ|→0

1
|γ|

∫
p∈γ

(~pi − ~p)dl(~p), (3.4)

where γ is a circle domain around the point ~pi with |γ| as its area. The integral sums up the differences of

all points in an infinitesimal area to a point ~pi. Regarding the integral we see, that the connection between

meshes and Laplace’s equation comes by discretisation. The discretisation of this curvilinear integral

leads to the following definition of the Laplacian of meshes. Let M = (V,E) be a mesh (or a graph) with

n vertices V and a number of edges E. Let δi be the differential coordinate and ~pi the absolute coordinate

of a vertex i. The discrete Laplacian operator ∆d is defined as

∆d(pi) = δi =
1
di

∑
j∈N(i)

~pi − ~pj (3.5)

where di = |N(i)| is the valence (number of neighbours) of the vertex i and N(i) is the set of vertices j

that are connected with the vertex i. These neighbour vertices j build a one-ring around the vertex i. This

one-ring builds the smallest region around the vertex, and hence, it is comparable to the limit from (3.4).

The differential coordinates δ can be seen as

“a discretization of the continuous Laplace-Beltrami operator, if we assume that our mesh

M is a piecewise-linear approximation of a smooth surface.” From [Sor05, p.2].

Consequently, the direction of the differential coordinate approximates the surface normal, and its length

is proportional to the surface curvature. This discretisation is also shown in Figure 3.1. According to
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these definitions, it can be said that the Laplacian operator applied to a surface contains the first and

second derivatives of the surface. The mean curvature is an expression for this second derivative. The

normal is related to the first derivative, because it is always orthogonal to the tangent plane of the surface

at a specified position. It can be deduced therefore, that the discretisised Laplacian approximates both

the curvature and the normal of the mesh at the specified vertex. However, this approximation is only

topologically correct, because we assumed that the mesh approximates the surface exactly. Hence, this

is not a fact, it is necessary to enhance the differential coordinates. As a triangulated surface mesh is not

stringently regular, which means that it does not only contain of unit length edges, the use of weights

is necessary. As the differential coordinates are used for shape editing there is a need for geometric

precision. This leads to a more detailed description of the differential coordinates.

(a) δi = 1
di

P
j∈N(i) ~pi − ~pj (b) 1

|γ|

R
p∈γ

(~pi − ~p)dl(~p)

Figure 3.1: Comparison of discrete and continuous surfaces, courtesy: [Sor05]

3.3 Differential Coordinates

Remember, the differential coordinate, in the following also called detail vector, of a vertex i, that belongs

to the mesh G = (V,E) with the set of n vertices V and the set of edges E, has been defined as

δi =
1
di

∑
j∈N(i)

~pi − ~pj , (3.6)

where ~pi is the absolute coordinate of i and di its valence. From this definition, it is obvious that δi
becomes ~0 if all neighbours j are coplanar.

The differential coordinate from (3.6) is built by the so called topological or graph Laplacian, because

there is no geometrical information about the vicinity of the vertex i. Other sources call it umbrella

operator because the one-ring looks like one. See Figure 3.2. All edges are assumed to be unit length,

which is only true for regular meshes. The most commonly used models are not regular at all, since they

are usually triangulated from CAD data. Therefore, weighting schemes are to be introduced.

3.4 Weighting

In order to add geometric weighting possibilities, one can extend the equation (3.6) by adding weights as

δi =
1∑
wij

∑
j∈N(i)

wij(~pi − ~pj), (3.7)
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Figure 3.2: The umbrella; courtesy: [KCVS98]

where wij is the weight of the edge (i, j). There are several alternative ways to define the weights wij .

Every alternative definition leads to a so called weighting scheme. In the following, these schemes are

presented and explained. When wij = 1∀i, j, (3.7) and (3.6) become identical. Therefore, this scheme is

called uniform weighting or umbrella operator. It only describes the topological properties of the mesh

but not the geometrical ones. The differential coordinate is only defined by the mean of the surrounding

vertices without considering their geometry. However, this does not describe the detail properly, as shown

in Figure 3.3. We regard the top of the both pyramids as the vertex i whose differential coordinate is com-

puted. The base corner points of the pyramids define the one-ring of vertices j around the vertex i. Both

one-rings, left and right, have the same point as mean. This results in the same detail vector although the

shape of the surface at these points differs. Hence, it is necessary to use variant values as weights.

The most common weighting scheme is the scale-dependent umbrella operator with wij = 1/l(i, j),

where l(i, j) is the edge length. It is presented by several authors [Fuj95, Tau95]. There is a similar

scheme described by Matthieu Desbrun et al. [DMSB99] which is also called the scale-dependent um-

brella operator. However, Desbrun et al. use a different definition of the Laplacian. This weight has

the effect that the geometric properties of the mesh are better approximated. It is a simple approach that

weights only the edges like in a weighted graph. To completely approximate the geometric properties, it

is necessary to add some information about the angles formed by the edges.

In the literature, two main concepts are mentioned: the cotangent weight and the tangent weight. The

Figure 3.3: Different surface, same differential coordinate, courtesy: [DMSB99]

tangent weight, which is also called mean value weight, with

wij =
1

l(i, j)
(tan

αj

2
+ tan

αj−1

2
),

- 20 -



Chapter 3 - Foundations

where αj is the angle between the edges (i, j) and (i, j + 1) around vertex i as pictured in 3.4, has been

deduced from Michael Floater et al. [FKR05, Flo03]. They introduced the mean value coordinates in

3D. This defines the detail vector δi as the difference between the absolute coordinate and its mean value

coordinate. Floater et al. proved that the mean value coordinates are valid in 3D for arbitrary star shaped

polygons [FKR05].

3.4.1 Cotangent Weighting

The definition of the cotangent weight

wij = cot γj−1 + cotβj

is not so easy to derive from literature. It seems that every publication has its own way to derive the

cotangent formula. In the following, some of them are outlined. Cotangent weights are used for the mesh

editing application in [SLCO+04, Ale05, ZHS+05]. The formula appears in different forms in each paper.

The oldest one is the work of Pinkall and Polthier [PP93], who obtained the formula by minimizing the

Dirichlet energy over a triangulation. Matthieu Desbrun comes to the formula by calculating the gradient

of a surface area for the entire one-ring vicinity [DMSB99]. According to Meyer et al., the discretisation

of the Laplace-Beltrami operator leads to the same formula [MDSB02]. But all the results from these

papers differ in the multiplication factor. Hence, in this thesis, the work of Matthias Eck et al. [EDD+95]

and their spring constant has been examined in detail. They introduced a spring constant κij for the edge

(i, j). It is defined by

κij =
(
l(i, j−1)2 + l(j, j−1)2 − l(i, j)2

)/
A(i, j, j−1)

+
(
l(i, j+1)2 + l(j, j+1)2 − l(i, j)2

)
/A(i, j, j+1), (3.8)

where A(i, j, k) indicates the area of the triangle stretched by the indexed vertices. By converting this

Figure 3.4: Vertex i and its one-ring neighbours

formula the edge vectors ~e(x, y) with |~e(x, y)| = l(x, y) are introduced. So the area A can be expressed

as follows:

A(i, j, j−1) =
1
2
(∣∣~e(j, j−1)× ~e(i, j−1)

∣∣) (3.9)

A(i, j, j+1) =
1
2
(∣∣~e(j, j+1)× ~e(i, j+1)

∣∣). (3.10)
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In order to keep track of the system the substitutions

Lj−1 := l(i, j−1)2 + l(j, j−1)2 − l(i, j)2 (3.11)

Lj+1 := l(i, j+1)2 + l(j, j+1)2 − l(i, j)2 (3.12)

are made. So we can rewrite (3.8) as

κij =
1
2

(
Lj−1

|~e(i, j−1)× ~e(j, j−1)|
+

Lj+1

|~e(i, j+1)× ~e(j, j+1)|

)
. (3.13)

Remembering to the Theorem of Pythagoras for arbitrary triangles c2 = a2 + b2 − 2ab cos γ and consid-

ering the notation from Figure 3.4, we have

l(i, j)2 = l(i, j−1)2 + l(j, j−1)2 − 2l(i, j−1)l(j, j−1) cos γj−1. (3.14)

This leads to

Lj−1 = 2l(i, j−1)l(j, j−1) cos γj−1

= 2
(
~e(i, j−1) · ~e(j, j−1)

)
(3.15)

and

Lj+1 = 2l(i, j+1)l(j, j+1) cosβj

= 2
(
~e(i, j+1) · ~e(j, j+1)

)
. (3.16)

Merging these equations (3.8) can be expressed as

κij = 2 · 1
2
( ~e(i, j−1) · ~e(j, j−1)
|~e(i, j−1)× ~e(j, j−1)|

+
~e(i, j+1) · ~e(j, j+1)
|~e(i, j+1)× ~e(j, j+1)|

)
= cot γj−1 + cotβj .

(3.17)

This means that using the spring constant from Eck et al. [EDD+95] for harmonic maps as a weight wij

leads to the cotangent weighting scheme for Laplacian mesh editing. These weighting schemes enhance

the detail vector in order to better approximate the geometries in the mesh. As already mentioned, the

differential coordinates can be constructed by a multiplication of the Laplacian matrix of the mesh with

the absolute positions of each vertex. As we want to reconstruct the absolute positions after editing some

vertices and fixing some others, it is necessary to examine the properties of the Laplacian matrix.

3.5 Laplacian Matrices

The Laplacian matrix has several important properties, such as being sparse and symmetric. The mesh

editing system described in this thesis builds up a linear equation system. This system is delineated as

one equation L~p = b, where L is the Laplacian matrix. It is constructed through L = D − A, where D

is a diagonal matrix with the valences of each vertex and A is the adjacency matrix of the current mesh.

As the mesh can be interpreted as a graph, the Laplacian matrix is often called the graph Laplacian. This

leads to the examination of the main properties of the matrix L, if it is constructed in this manner.
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3.5.1 Sparseness

A matrix is called sparse, if it has many more zero elements than non-zero ones. Zero elements are impor-

tant for computational aspects, because multiplications with zeros need no computation. In addition, it is

not even necessary to store the zero entries. If at least one element in a row or column of a matrix is non-

zero, the row or column is called occupied, and thus, it has to be stored because it contains information.

Sparse matrices are mostly stored as double lists. In a double list, all entries contain the non-zero matrix

element and an index. In this implementation, the sparse matrices are stored as follows. Because of the

connectivity of the manipulated meshes the valence of each vertex is greater than zero and therefore, the

diagonal is completely occupied. For each row an array is constructed. Every entry of this array contains

an index and a value. The index indicates the current column. Thus, only the non-zero entries are stored

and it is easy to count the number of entries of each row.

Sparse matrices provide the possibility to significantly accelerate the classic matrix algorithms. But the

drawback of them is the fact that many of these classic matrix algorithms are not easy to adapt to the

sparse matrix data structure with enhancing their efficiency. Recent compilers optimise the machine code

in order to avoid zero multiplications and speed up the system. Furthermore, it is necessary to balance

between the use of new complex algorithms and the use of fast and simple ones. In this implementation,

both representations are used concurrently. Each task is processed with the usage of the appropriate data

structure. For example, a matrix multiplication is much faster with the sparse matrix data structure, but

not its Cholesky decomposition.

3.5.2 Symmetry and Rank

A Laplacian matrix is symmetric. That means that LT = L. Symmetry is one of the most important

properties of a matrix, because of the impact it has on the eigenstructure of the matrix. As certainly

known, a linear equation system can have no solution, one solution or an infinite number of solutions.

The number of solutions existing can be described by the rank of the matrix involved. The rank r of

a matrix is the amount of linearly independent row or column vectors. r is always less or equal than

the dimension n of the diagonal of a matrix. Every matrix with r = n and non-zero determinant is

called regular. Thus, it can be said, that every regular matrix has an inverse and thus its linear equation

system can be solved. The Laplacian matrix L is singular (not regular). Hence, it is not invertible and

therefore, the equation system is not analytically solvable. The singularity can be shown as follows. The

Laplacian matrix is symmetric and every row sums up to zero. This results in detL = 0 and its rank can

be determined. L is symmetric, due to this fact, each column sums up to zero, too. In other words, all

the row vectors sum up to the zero vector. As the last row vector is equal to the negated sum of the other

rows, it can be constructed as a linear combination of the other rows. For this reason L has the rank n−1,

if the mesh is connected. For the shape editing application it is quite usual to work with one connected

component. In the case of several connected components, the rank becomes n−k, where k is the number

of connected components. This makes it clear why it is necessary to add constraints when the absolute

coordinates are to be reconstructed out of the detail vectors. If the Laplacian of a connected mesh and

the differential coordinates of the mesh are known, it is only then possible to reconstruct the absolute
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coordinates, if at least one of the absolute coordinates is determined, because such a determination raises

the rank up to n and makes the matrix invertible and hence, the system solvable.

3.5.3 Norm

In an editing application, it is usual to transform more than just one vertex. As described, the user defines a

ROI containing fixed and handle vertices. Due to this, there are several constraints that over-determine the

equation system. Such a system is best solved numerically. For approximating the quality of numerical

solutions of linear equation systems, it is necessary to introduce the following terms.

The norm ‖A‖ of a matrix An×m can be defined in several ways. According to the literature [BSM00,

Saa96], the three most important norm definitions are the following, the so called p-norms.

• Sum of column norm (p = 1):

‖A‖1 := max
1≤j≤m

n∑
i=1

|aij |. (3.18)

• Spectral norm (p = 2):

‖A‖2 :=
√
λmax(ATA), (3.19)

where λmax(ATA) denotes the largest eigenvalue of the matrix ATA.

• Sum of row norm (p = ∞):

‖A‖∞ := max
1≤i≤n

m∑
j=1

|aij |. (3.20)

A norm of a matrix has the correspondent properties of a vector norm. So we have

‖A‖ ≥ 0, ∀A ∈ Cm×n, and ‖A‖ = 0, if and only if A = 0,

‖αA‖ = α ‖A‖ , ∀A ∈ Cm×n, ∀α ∈ C

and the triangle inequality

‖A+B‖ ≤ ‖A‖+ ‖B‖ , ∀A,B ∈ Cm×n.

A norm is called consistent, if

‖AB‖ ≤ ‖A‖ ‖B‖ . (3.21)

Every p-norm ((3.18)-(3.20)) is consistent. A result of the consistency is that for every square matrix A,∥∥∥Ak
∥∥∥

p
≤ ‖A‖k

p . (3.22)

These norms are necessary to compute the condition number of a matrix, which is a measure for the

quality of a solution. Later, the quality of the solutions in the Laplacian mesh editing application is

examined and therefore, the defined norms are applied.
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3.5.4 Eigenvalues and Eigenvectors

Before the Laplacian mesh editing scheme is explained in detail, the spectral properties of the graph

Laplacian are described. With the help of the spectral properties the coherence of the rank and the number

of connected components of the mesh or graph will be shown. This coherence fortifies the theoretic base

of the Laplacian mesh editing approach. The Laplacian mesh editing bases on the fact that the rank of the

Laplacian is n−1 because the absolute coordinates can be reconstructed if and only if one or more vertices

are fixed. To show that the rank of a Laplacian is determined by the number of connected components,

the eigenvalues of the Laplacian need to be considered. The following theorem has been formulated in

[BSM00, p.289]:

Theorem 3.1 The rank of a matrix depends on the multiplicities of the eigenvalues.

In order to explain the term eigenvalues, we need to introduce the special eigenvalue problem. Remember

that L is a symmetric Laplacian matrix with size n. Solving

L~p = λ~p

is called the special eigenvalue problem. It can be rewritten as

(L− λI)~p = 0, (3.23)

where I denotes the identity matrix. The complex scalar λ is called the eigenvalue and ~p is called the

eigenvector of the matrix L. If and only if

det(L− λI) = 0,

the homogeneous equation system (3.23) has non-trivial solutions ~p 6= ~0. Through the expansion of the

determinant it arises

det(L− λI) =

∣∣∣∣∣∣∣∣∣∣∣

l11 − λ l12 l13 . . . l1n

l21 l22 − λ l23 . . . l2n

...
...

...
...

...

ln1 ln2 ln3 . . . lnn − λ

∣∣∣∣∣∣∣∣∣∣∣
= Pn(λ) = (−1)nλn + an−1λ

n−1 + . . .+ a1λ+ a0 = 0,

where Pn(λ) is a polynomial of degree n. This is called the characteristic polynomial. This polyno-

mial is constructed by the calculation scheme for the determinant of the system. The coefficients ai are

calculated by using rules for the calculation of the determinant. This calculation is very expensive and

depends on the size of the matrix n. The roots of the characteristic polynomial are the eigenvalues of the

matrix L. If Q is a regular matrix, the characteristic polynomial of Q−1LQ is the same as Pn. Hence, it

holds that Q−1LQ has the same eigenvalues as L. It is obvious that the matrix L with size n has exactly

n eigenvalues λ1, λ2, . . . , λn, because every polynomial of degree n has n roots, if they are counted with

their multiples. The set of all multiple eigenvalues is called the spectrum σ(L) and the maximal value

ρ(L) = max
λ∈σ(L)

|λ| (3.24)
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is called the spectral radius of L.

Since detL = 0, we get the eigenvalue λ1 = 0. In Section 3.5.2 it is written that the sum of every row of

L sums up to zero. This implies the non-trivial eigenvector (1, 1, . . . , 1)T for the eigenvalue λ1.

Hence, L is a real symmetric matrix, the spectral theorem is valid. The spectral theorem includes the

following five items:

Theorem 3.2 Spectral theorem

• L has real eigenvalues λ1, λ2, . . . , λn and n orthonormal eigenvectors, that form a basis in Rn.

• The multiplicity of the eigenvalue λi is the order of λi as root of the characteristic polynomial and

so the maximal number of linearly independent eigenvectors of λi.

• It exists Q with Q−1 = QT so that QTLQ =


λ1 0

. . .

0 λn

.

• det(L) =
∏n

i=1 λi.

• trace(L) =
∑n

i=1 λi, whereby the trace of a matrix L is the sum of its diagonal elements.

In case of the Laplacian, the diagonal elements are the valences (the number of direct neighbours) of

each vertex. Therefore, the sum of the valences is the sum of the eigenvalues. This makes it possible to

bound the largest eigenvalue of the mesh Laplacian. This property will be recalled later. We know that

the Laplacian has n real eigenvalues, but we need to examine if they are all positive. This leads to an

examination of the spectrum of the Laplacian. Regarding the mesh or graph G = (V,E) with the set of

vertices V and its edges E, we can write L = L(G) and call L the Laplacian of the graph G. Remember

the following

L = D −A; L~p = λ~p

with D as a diagonal matrix with the valences of each vertex and A as the adjacency matrix. Let RV be a

set of functions

RV = {f : V → R}.

For every vertex i there is a function fi ∈ RV . With the summation (f + g)i = fi + gi, the multiplication

by real numbers (af)i = a(fi) and the inner product

〈f, g〉 =
∑
v∈V

fvgv,

RV becomes a real vector space of dimension n. The corresponding norm in RV is

‖f‖ = 〈f, f〉1/2 = (
∑
v∈V

f2
v )1/2.

The Laplacian matrix L can be regarded as a linear operator on RV . Its action is determined by the rule

of matrix-vector multiplication, i.e. g = Lf is the function defined by the formula

gi = (Lf)i =
∑
v∈V

(L)ivfv, i ∈ V.
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There is a natural quadratic form associated with L:

〈f, Lf〉 =
∑
iv∈E

aiv(fi − fv)2, (3.25)

where aiv is a positive weight for the edge between the vertices i and v. Because L is real symmetric,

the natural form (3.25) implies that L is semi-positive definite and therefore all eigenvalues are non-

negative [Moh97]. Considering this, the smallest eigenvalue is λmin = 0. The largest eigenvalue λmax is

bounded to

λmax ≤ 2dmax(G),

where dmax(G) is the maximal valence of a vertex of the mesh G. A proof of this is given in [Moh97,

p.10]. This spectral property, including the limits of the eigenvalues, opens the possibility of mesh com-

pression. Similar to the JPEG compression of images, 3D meshes can be compressed by cutting off the

high frequencies. See the state of the art report of Olga Sorkine [Sor05] as an introduction or other liter-

ature [BCG05, KG00] for details. Earlier in this section, we found out, that there are n real eigenvalues

and that at least one λ1 = 0 exists if G is connected. Therefore, the following theorem is posed:

Theorem 3.3 The multiplicity of the value 0 as an eigenvalue ofL(G) is equal to the number of connected

components of G.

A proof of this proposition can be found in the work of Mohar [Moh97]. A graph G with its Laplacian L

has k connected components if and only if λ1(L) = · · · = λk(L) = 0 and λk+1(L) > 0. As mentioned

in Theorem 3.1, the rank of a matrix depends on the multiplicities of the eigenvalues and therefore, the

rank of the Laplacian is n − k. In our mesh editing application, we assume that the mesh is connected

and hence, the Laplacian matrix L has the rank n − 1. This fact proves that it is only necessary to add

one constraint, in form of a linear independent equation, in order to make the equation system solvable.

This can be done by determining the absolute position of one single vertex. More about this in the next

section.

3.6 Laplacian Mesh Editing

Recall: on a mesh M = (V,E) with n vertices V and a number of edges E, we introduced a differential

coordinate

δi = ~pi −
1
di

∑
j∈N(i)

~pj

in equation (3.5). The differential coordinate describes the detail of the shape at the vertex i, and therefore,

it is also called the detail vector. It is already mentioned that the Laplacian mesh editing scheme is based

on the solution of a linear equation system. This system is built as

L~p = δ, (3.26)

with L = D − A as the Laplacian matrix with size (n, n). ~p is a vector with the absolute position of

each vertex and δ is a vector containing the differential coordinates. As mentioned earlier, the matrix
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L has rank n − 1 . Therefore, the equation (3.26) is not analytically solvable. Marc Alexa found out

that there are several possible applications by fixing at least one vertex [Ale03]. To solve the equation

for the absolute coordinates, only the absolute coordinate of one vertex needs to be determined. For an

editing application, we first need to specify the absolute coordinate of at least one vertex by adding a

row (0, . . . , 1, 0, . . . , 0) with the 1 at the kth position in the row vector to the matrix L. In the vector δ,

which contains the detail vectors of each vertex, the absolute position of the kth vertex fk = pk has to

be attached. Now the kth vertex is fixed at its absolute position. For editing another vertex with index m,

also a row is added to L, but its new absolute position hm, which is defined by the user, is attached to δ

instead of the old position. See Figure 3.5 as a survey of the construction of the system. The vectors ~p and

δ contain three-dimensional entries. Therefore, in the implementation, it is necessary to split the system

into three parts, one for each dimension. According to this editing approach, the user has to define a so

called region of interest (ROI). He selects the vertices he wants to edit directly as handle vertices, and the

area of influence is determined by a ring of fixed vertices placed around the selected ones. The vertices

in the area between the handle vertices and the fixed ring are reconstructed as explained in the following.

More details about the selection scheme can be found in Section 4.3.2.

Now the system is over-determined and in general, there does not exist an exact solution. Sorkine and

(a) Mesh structure (b) Equation system

Figure 3.5: Scheme for Laplacian mesh editing.

Lipman et al. found out that a least squares solution is numerically more stable and easier to compute

because of this user controlled over-determination [SCOT03, LSCO+04]. The linear equation system

L′~p = δ′
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is over-determined. L′ and δ′ have the size n0 and ~p has the size nwith n0 > n. But how is this numerical

least squares solving realised? To answer this question we introduce an error vector ~r with

~r = L′~p− δ′, ~r 6= ~0.

The norm ‖~r‖ =
√
~rT~r is called the residual. ~p will be determined in the manner that

m∑
i=1

r2i = ~rT~r = (L′~p− δ′)T (L′~p− δ′) → min . (3.27)

This means that the quadratic error is minimised. This method was developed by Carl Friedrich Gauss,

and it is also called the root mean square problem or least-squares method. The next solution step is

called Gauss-transform. The vector ~p minimises the error in (3.27) if and only if ~r is orthogonal to all

columns of L′. This can be written as

L′T~r = L′T (L′~p− δ′) = 0

or

L′TL′~p = L′T δ′. (3.28)

The equation (3.28) is a linear equation system where L′TL′ is symmetric and also positive-definite.

Solving a linear system with these properties is best done with a factorisation. The matrix L′TL′ is

decomposed into an upper and a lower triangular matrix. The Cholesky decomposition does such a

factorisation in a very efficient way, and hence, it is used in this application.

3.7 Cholesky Decomposition

As described in [BSM00, p.916], Cholesky’s method bases on the definition that every symmetric positive-

definite matrix of real numbers A can be decomposed into

A = MMT ,

where M is a lower triangular matrix with positive diagonal entries. M is composed as

M =



m11

m21 m22 0

m31 m32 m33

...
. . .

mn1 mn2 mn3 . . . mnn


,

where

mkk =
√
a

(k−1)
kk , mik =

a
(k−1)
ik

mkk
(i = k, k + 1, . . . , n).

The entries a of the matrix A are updated recursively in each step with

a
(k)
ij = a

(k−1)
ij −mikmjk (i, j = k + 1, k + 2, . . . , n).

After n steps A(n+1) = I , and the primary linear equation system A~x = ~b can be solved in the following

steps:
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1. A = MMT : do the Cholesky decomposition and substitute MT~x = ~c,

2. M~c = b: compute the auxiliary vector ~c by forward substitution,

3. MT~x = ~c: compute the solution ~x by back substitution.

The Cholesky decomposition runs inO(n3) for dense matrices. Since the Laplacian is sparse, the runtime

of the algorithm can be shortened significantly by using fill-in reducing pre-ordering steps [Saa96]. In

addition, in this application, the decomposition is performed only once for every ROI selection. Finding

the solution by forward and back substitution should allow interactive rates, even though they have to be

repeated three times, one for each dimension. These last two steps can be done in linear time because of

the triangular structure of the matrix M . This makes the Cholesky decomposition a very suitable tool for

Laplacian mesh editing.

However, there is one problem with the Cholesky decomposition. It is an unstable algorithm, which

behaves in a reasonable way for large residuals ‖~r‖ and small solutions ‖~x‖. In order to examine when

these conditions are satisfied, the conditioning of linear systems needs to be specified.

3.8 Condition Numbers

In the case of numerically solving linear systems, it is necessary to check how prone to error the solution

is. One indicator can be the determinant of a matrix, but for large matrices, the determinant is mostly

neither a good indication of quasi singularity nor a reasonable degree of sensitivity of the linear system.

The reason for this is that det(A) is the product of the eigenvalues, which depends very much on the

scaling of a matrix. Therefore, the condition number of a matrix is introduced, which is invariant of

scaling. It is defined as

κ(A) = ‖A‖
∥∥A−1

∥∥ . (3.29)

According to the matrix norms defined in Section 3.5.3, the condition numbers are indicated in the same

way as the used norm. For example,

κ1(A) = ‖A‖1

∥∥A−1
∥∥

1
.

The larger the condition number, the more ill-conditioned the linear system is, and thus the greater the

impact of an error on the solution. Linear systems with a large condition number are called ill-conditioned

and if the condition number equals to one, the system is well-conditioned. For singular matrices such as

the Laplacian the condition number is defined as κ(L) = +∞. The condition of the current system for

mesh editing will be examined in Section 4.4.3.2.
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4 Implementation of Shape Editing Methods

4.1 Introduction

After presenting the mathematical foundations, this chapter describes the software application that was

developed in this thesis. The source codes of the software can be found on the CD-ROM attached to this

diploma thesis. Due to the fact, that DaimlerChrysler owns the software framework “veo”, there is no

executable programme available. Recall that the software, as mentioned in 1.1, is intended to be used by

design engineers in order to enhance the assembly simulations by allowing to deform the units that are

tested for mounting. The assembly simulation is done with VR software “veo”, which has been introduced

in Section 1.1. At the current state, all surface deformations have to be done in a CAD programme. The

design engineers who do the assembly simulation are prevented from switching the software by allowing

to deform objects in the “veo” framework. Both softwares work with different kind of data. Hence, the

pluses and minuses of working in virtual environments are presented firstly. Then, the user interface

is presented including user interaction and selection mechanisms. The user has different possibilities to

transform the selected vertices. Different types of vertex transforms are presented, and then, the properties

of meshes in general are described. After that, this chapter will close with a larger section examining the

interpolation of the neighboured vertices. This interpolation is realised, as already mentioned, by the

Laplacian shape editing scheme. Here, the key features of Laplacian mesh editing are examined in detail.

In order to get a better access to the topic, the working environment is described firstly.

4.2 Working in Virtual Reality and on Triangles

There is plenty of literature on working in virtual environments, and there are two sources to emphasise

according to car manufacturing which have been considered: a diploma thesis by Sylvie Schoeniger

[Sch04], and a book by Engelbert Westkämper et al. [WBD02]. Sylvie Schoeniger wrote her diploma

thesis recently at DaimlerChrysler in Ulm. She describes all requirements needed for implementing a

deformation system for virtual reality. She presents different kinds of manipulation tools and her thesis

contains a detailed part about the modelling metaphors in relation to the application at DaimlerChrysler.

Westkämper, Bullinger and Deisinger describe in their book all the issues involved in developing a shape

deformation system. They describe all the different aspects of the working environments such as display,

input device, scaling issues, tracking devices, computation power requirements and so on. The book gives

a good introduction to all the topics that are necessary to develop such a system.

The main difference between working in virtual reality environments and a CAD workspace is the data

structure. In CAD, the geometric data of the 3D objects is stored and processed as exact analytical

descriptions of the shape. These descriptions contain surface functions. This description needs a lot

of computation power, so there is no way to add physical simulations such as an assembly test with

realistic visual effects using this data structure in real-time. Modern graphic cards are optimised to display

triangles. Every 3D object is approximated as a triangular mesh and the graphics hardware draws the

triangles. This is what it is optimised for. Therefore, a high quality rendering of triangulated 3D surfaces
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is possible in real-time. The quality of the approximation depends on the curvature of the approximated

surface and on the amount of triangles. The triangulated models in car design need to be very accurate,

because otherwise the assembly tests and other simulations do not lead to sufficiently precise results. Due

to this fact, the amount of triangles rises rapidly with the size and complexity of the 3D objects. However,

every triangulation is only an approximation of the accurate data and thus, the mesh editing system works

only on an approximation, which has to be kept in mind. In the following, the user interface is regarded.

4.3 User Interface

4.3.1 Interaction

The user interface was developed together with Birgit Meisert who was working for an internship at

DaimlerChrysler. At first, the working environment in which the programme will be used mainly, had to

be investigated. It is a classic desktop environment with a standard mouse as the main input device and a

3D space mouse as a second device. The VR software “veo” is also used on desktop computers for simple

planning or developing tasks. Especially if there is no need for a stereoscopic view, it is used for working

on quick assembly simulations immediately. In this case, the space mouse is used to translate and rotate

the objects in the scene. In addition, the assembly tests are made with this 6-DOF5 input device. Because

of the frequent use of the space mouse for other tasks in “veo”, we decided to use a standard 2D mouse

as the main input device.

Interviews with prospective users pointed out, that the users wished to interact with the system on a very

low level. Each vertex of the object should be transformed with maximum precision. On the other hand,

it should also be possible to deform large areas in a fast and intuitive way. So it was decided to implement

an intuitive and well known selection mechanism at first. The modelling tasks is based on an exact and

user controlled localisation, and therefore, the following selection scheme is necessary.

4.3.2 Selection

In order to achieve this exact localisation, the user is allowed to select faces and vertices. The selected

vertices are marked with a blue cube around the vertex. Selecting a face leads to the automatic selection

of all adjacent vertices. These marked vertices are called the handle vertices or selected vertices in the

following. The size of the cube is adjustable to the size of the object. These cubic markers make it possible

to grab the selected vertices and transform them. The grabbing and transforming task is implemented in a

classic and intuitive drag and drop manner. This means, the user clicks on one of the selected vertices he

intends to transform, holds the mouse button and moves the mouse, and thereby also the vertices, to the

new position. Here, he releases the mouse button, and the vertices are placed at the new intended position.

This usual method makes it easy to reach appropriate results rapidly without a long period of training.

There are three kinds of transformations possible which will be described in detail in Section 4.4.1.

The user has the possibility to add more vertices to his selection by holding the shift key pressed and

clicking on other vertices of the object. In this way, he can also deselect single vertices. For a better
5degrees of freedom
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selection of large areas and greater amounts of vertices, three different tools for selection are implemented.

They are the so called frame selection tools. The user draws, by drag and pull, a frame on the screen and

all vertices that lie inside the frame are selected. If there is a connection to the backside of the object, the

invisible vertices are selected as well. The frames can be rectangular, ellipsoidal or a polygon. These three

possibilities enable an intuitive selection independent of the shape of the 3D object. This interface is a

straightforward 3D extension of the well known interactive technique called direct manipulation [Pre94].

As mentioned in Section 3.6, the user has to define a ROI, including the neighbourhood around the

Figure 4.1: A classic ROI selection on a sphere

selected vertices and a number of fixed vertices around the neighbourhood. In Figure 4.1, a classic ROI

selection on a sphere is shown. The blue cubes are the handle vertices, the yellow stars indicate the

neighbour vertices, while the purple stars mark the ring of fixed vertices with a radius of two. On the

one hand, he is able to define the radii of these regions, and on the other one, he can also define the

neighbourhood region with the same tools as for the handle vertices. Here, some selections can be made

where the neighbourhood region is not placed around the handle vertices. Due to the fact that such

selections mostly lead to unrealistic deformations, even unskilled users know to avoid them. Independent

from the selection, the software keeps stable, but such a ill-defined deformation can destroy the whole

shape. For it, an “Undo” button is realised, that takes back the last deformation. The “Undo” option is a

great advantage of working with models in virtual environments instead of solid materials.

4.4 Modelling Aspects

Recall that the modelling framework should suffice the following constraints.
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• A high precision is necessary.

• An intuitive user interaction is necessary to avoid long training periods.

• Both fine and large scale deformations need to be possible.

• The flexibility must be high.

• The user needs visual feedback about the measure of the deformations.

In the first instance, the vertex transformation ideas are explained. Then the properties of the edited

meshes are mentioned. After that, the interpolation of the neighbouring vertices is regarded. There are

several aspects that need to be considered.

4.4.1 Vertex Transformation

(a) Selection (b) Initialise deformation (c) Pushing

(d) Further pushing (e) Result

Figure 4.2: Pressing an indent into a sphere

The first vertex transformation allowed is a translation on the focal plane. The selected vertices, which

are highlighted by a cube, are fixed on a plane at the current distance to the camera and the user can

move them up, down, left and right from his point of view. The grabbed cube moves within the mouse

cursor. This translation sometimes leads to unintentional results, because the user cannot see the depth of

the object on a classic monitor. Therefore, it is hard to recognise the true shape of the object. Only the

monocular depth criteria are available. These are typical perspective problems, and skilled users know to

handle them, since they occur likewise in CAD environments.

The second transformation method is a translation along the mean normal of the selected vertices. The

mean normal is calculated by summing up all vertex normals and normalizing the resulting vector. The
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user translates all selected vertices along the direction of the mean normal. This method is displayed in

the image series of Figure 4.2. After the ROI selection the vertex is translated in direction to the centre

of the sphere. After releasing the mouse button, the ROI selection is still enabled, in order to adjust the

deformation even more precisely. The yellow number shows the extent of the deformation. This method

is very useful for the main use case of the software as described in Section 1.1. When the assembly test

failed because of a very small penetration at one side of the object, the user can deform the collided side

a little bit to the inside and redo the assembly test. Therefore, he marks some of the vertices at the objects

side and deforms them contrary to the direction of the mean normal. This can be done rapidly and the

assembly test can be repeated.

The third transformation is a rotation. Every rotation takes place around an axis. If the user activates the

rotation mode, in the first instance, he has to place the rotation axis in the scene. He drops the axis on

the focal plane and after that, he can rotate and translate it into the desired orientation. When the axis

is positioned, the user grabs one of the selected vertices and turns all selected ones around the axis. In

Figure 4.3 the vertex transformations are pictured. The three methods are indicated by the red arrows, the

green line indicates the rotation axis. The double arrow in the middle signifies the transformation along

the normal, the crossed arrows on the right side of the image denotes the transformation on the focal

plane.

These three methods enable a high flexibility to deform an object while preserving the option of intuitive

Figure 4.3: The vertex transformations

deformations. All methods are supported by an on-screen display of the current deformation measure. In

the first case, the length of the translation of the selected vertices is displayed, but the true direction is

not clearly visible because of the perspective problem mentioned above. In the second case, the direction

is known, and therefore, a very precise deformation is possible. And in the third case, the rotation angle

is displayed on the screen. All three deformation degrees can be controlled by the user. He specifies the

magnitude of the transformation, that is executed when the mouse is moved for one pixel, by changing a

slider in the dialog window. This combination of visual feedback and measurement control allows both a
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very high precision and very fine deformations.

4.4.2 Meshes

The editing software is able to load data of 3D models. This data is stored in the OpenInventor file

format, which contains the vertex data as a list of triangles. The data is processed in order to build a mesh,

because it is necessary to know the adjacent vertices of each vertex. A mesh can be seen mathematically

as a graph. Thus, it is obvious that there are plenty algorithms and methods that can be used on these

structures. The implementation according to this thesis takes advantage of this fact. Constructing the

mesh is done in a so called preprocessing step. When the user enters the deformation mode, the 3D object

data is separately stored in order to enable a rapid access to the connection properties of each vertex. The

deformation object class contains a list of all vertices and one of all triangles. In addition, each vertex

knows its adjacent vertices and triangles and the same for each triangle vice versa.

4.4.3 Interpolation of the Neighbourhood

If only the selected vertices are deformed, on the objects’ surfaces sharp edges and bendings may occur. In

order to avoid these effects, the neighbourhood around the deformed area can be interpolated, so that the

transition between moved and fixed vertices is kept smooth. To do this, two methods have been developed,

a straight and simple one, and a more robust and solid one. At first, the straight one is introduced, and

after that, the second one, which is based on Laplacian mesh editing, is described in detail.

4.4.3.1 Direct Distance Weighted Translation

For the two translation transformation schemes, a simple way to interpolate a smooth transition has been

realised. This method is similar to a method for animation presented in [Par02]. As mentioned earlier, the

user defines a ROI which contains handle, neighbour and fixed vertices. During one deformation step, all

handle vertices are translated in the same direction for the same displacement. The fixed vertices do not

move. In other words: the handle vertices are translated by the factor 1 and the fixed vertices by the factor

0. It is obvious that the neighbour vertices will move in the same direction, but with a smaller magnitude.

Each neighbour vertex located between them has to be assigned to a factor. This factor depends on the

distance of the corresponding vertex to the handle vertices. The ratio

r(~x) =
|~x− ~xh|

min(| ~xf − ~xh|)

is defined as the distance of the neighbour vertex ~x to the next handle vertex ~xh divided by the minimal

distance of a fixed vertex to a handle one. For this ratio, it is valid that

r(~x) ∈ [0, 1] ∀ ~x ∈ N,

where N is the set of neighbour vertices, if the neighbourhood is defined by a radius around the handle

vertices. Using this ratio directly, would lead to a linear behaviour which is not smooth in an ordinary
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sense. Thus, the ratio is mapped to a Gaussian. The searched factorisation function f : R+ → [0, 1] is

defined by

f(r(~x)) = e−(a∗r(~x))2 . (4.1)

With the factor a = 2, the function gets the value f(1) ≈ 0.02, which means that the function maps the

ratio to a smooth transition, see Figure 4.4. There are several alternative functions conceivable. In Rick

Parent’s book, the factorisation function depends on the number of edges between the vertices and not

on the Euclidean distance [Par02]. Such definitions require a regular mesh which is not available in this

case. Using the Gaussian (4.1) as transition function led to good results, and therefore, it was used in the

implementation. Thereby the neighbour vertices were determined by a user controlled frame selection,

some problems can occur, because the ratio can exceed one. Using the Gaussian, this problem could be

overcome since it asymptotically approaches the x-axis. But this way to interpolate the vicinity of the

handle vertices has its limitations, if the transformation is more than just a translation. This induces the

implementation of a Laplacian mesh editing tool.

Figure 4.4: Plot of the direct distance weighted translation function f(r(~x))

4.4.3.2 Laplacian Mesh Editing

As mentioned in Section 2.4, the main idea of Laplacian mesh editing is restoring the absolute coordi-

nates from the differential coordinates of a mesh. If the differential ones are known, the user needs to

define at least one absolute coordinate to reconstruct the whole mesh. The idea of editing the mesh is to

fix a group of vertices at their original positions and another group at new positions. Then the reconstruc-

tion is done as a minimisation.

Firstly, we consider the Laplacian matrix L of the whole mesh. According to the number of vertices, this

matrix is quite big but sparse. Regarding Section 4.3.2, the user defines a ROI. Through this localisation,

the size of the system to be solved can be reduced. This ROI contains three kinds of vertices: handle,

neighbour and fixed vertices. Only the vertices belonging to one of these groups are taken into account.

The number of the fixed vertices should be large enough to keep the minimisation stable. This is reached

by building a ring of fixed vertices around the handle and neighbour vertices. According to [SLCO+04],
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Area Number of vertices

Mesh V n

Submesh V ′ (only ROI) m

handle vertices ~h h

neighbour vertices ~g g

fixed vertices ~f f

Matrix Size (rows,columns)

Mesh Laplacian L (n, n)

Submesh Laplacian LROI (m,m)

Enhanced Submesh Laplacian LE (m+ h+ f,m)

Conditions

m = h+ g + f

m� n

f ≈ 0.1 ·m

Table 4.1: Vertex distribution in ROI

the radius of the ring of fixed vertices should be around 10% of the radius of the editing area. In this

implementation, the user adjusts the radius with a slider. After the user has defined the ROI, he is able to

transform the handle vertices as described above.

Once this is done, the equation system in the form A~x = ~b is constructed. Therefore, the Laplacian of the

submesh V ′ is constructed, containing only those vertices located in the ROI. This leads to a significantly

smaller matrix LROI which is symmetric and has the size m, where m is the number of vertices in the

ROI. According to this matrix we build the vector δ containing all differential coordinates of the vertices

inside the ROI. After that, LROI gets attached by rows including the handle vertices and fixed ones. These

rows have the form (0, . . . , 0, 1, 0, . . . , 0) with the 1 at the kth position, if the correspondent vertex has

the index k in the mesh. In addition, each of these rows can be weighted with different values wh and

wf , corresponding for the handle vertices and the fixed ones. The enhanced matrix LROI is called LE .

The vector on the right side is called δ′. It contains the differential coordinates of the m vertices attached

to LROI and the new absolute positions of the handle vertices plus the old positions of the fixed vertices.

See Table 4.1 for an overview of the size of the equation system that has to be solved.

When the user drops the handle vertices to a new position, the equation system

LE~x = δ′

is built. After that, the new positions of the neighbour vertices are computed. This computation is done

by solving the equation system. The system is over-determined and so, as mentioned in Section 3.6, it is

best to use the least squares method. Therefore, the error function

E(V ′) = ‖LROI~x− δ‖2 +
∑
i∈H

(wh(xi − hi))
2 +

∑
j∈F

(wf (xj − fj))
2 (4.2)
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is defined, where wh and wf are the weights for the handle and respectively the fixed vertices. How these

weights are determined, is explained in Section 5.3. H and F are the sets of the according indices, hence,

the sum variables i and j indicate the selected respectively the fixed vertices. Note that the xi and xj

are elements of ~x. The equation system is not quadratic any more, it is overdetermined and so the error

function E(V ′) is minimised over the variable ~x. As also mentioned in section 3.6, the Gauss transform

is executed as follows:

LE~x = δ′

LT
ELE~x = LT

Eδ
′.

As LT
ELE is symmetric and positive definite, the Cholesky decomposition is used for solving the system.

We substitute

LT
ELE := M

and factorise

M = RTR

into an upper and a lower triangular matrix R and respectively RT . These matrices are used to calculate

RT ξ = LT
Eδ

′,

where ξ is an auxiliary vector computed by forward substitution. Finally,

R~x = ξ

can easily be solved by back substitution.

Summing up the equation system properties; the matrix LE is sparse, for this reason the matrix M =

LT
ELE is still sparse. Through the symmetry and the structure of the Laplacian,M is also positive definite.

Therefore, the Cholesky factorisation is possible and the decomposition can be done quite fast. It would be

reasonable to use a free software library of sparse matrix algorithms in order to decrease the computation

times for solving the sparse linear systems, but the usage of such a library is not possible in commercial

applications at DaimlerChrysler. In this implementation, the classic algorithm for arbitrary occupied

matrices is used and nevertheless the performance allows real-time interaction. The main advantage of

this decomposition is the fact that the matrices M and LT
E do not change during the editing process,

because they only depend on the ROI. If the ROI is set, these matrices can be computed and stored. The

two steps of forward and back substitution can be done in linear time. That makes the algorithm really

fast and allows shape editing at interactive rates.

But what about the conditions of this minimisation? The Laplacian of a connected mesh is ill-conditioned,

because it is not even regular. However, we must consider the matrix M = LT
ELE . Considering the

condition number from equation (3.29):

κ(A) = ‖A‖
∥∥A−1

∥∥ ,
and let us take a look at the norm of the matrix M . LE is constructed from the Laplacian of a con-

nected submesh and additional rows containing only one entry, the weight w. Each row and column of a

Laplacian matrix sums up to zero. For this reason, we have

‖LE‖1 = ‖LE‖∞ = w =
∥∥LT

E

∥∥
1

=
∥∥LT

E

∥∥
∞ .
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This equality leads to

‖M‖1 =
∥∥LT

ELE

∥∥
1
≤ ‖LE‖1

∥∥LT
E

∥∥
1

= w2,

if equation (3.21) is taken into account. Regarding equation (3.22), it is valid that∥∥M−1
∥∥

1
≤ ‖M‖−1

1 .

However, due to the fact that

‖M‖−1
1 ≥ 1

w2
,

it is not possible to estimate the condition number in this way. Therefore, the condition number has been

(a) Condition and entries

(b) Condition and rows

Figure 4.5: Coherence between condition number and matrix size

computed for small matrices. Figure 4.5 shows the coherence of the condition number and the size of the

matrix M . For a matrix A in relation to a small ROI (one handle, 44 neighbour and 28 fixed vertices),
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the condition number is about κ(A) = 373. Both plots show that there is no extreme increase of the

condition number and that the ratio between the condition number and the number of rows in the matrix

is even almost constant. Hence, the condition number will not grow noticeably, and it can be said that the

equation system is well-conditioned even for a larger ROI. An ill conditioning could only occur when an

particularly unfortunate ROI has been chosen by the user. In this case, the “Undo”-button will help.

4.5 Problems and Disadvantages

Having examined the potential problem of the condition of the over-determined equation system, we

can move on to the handling of degenerated triangles. A degenerated triangle has no neighbours and

hence, the computation of its differential coordinate does lead to instabilities. If the mesh is not properly

connected, the construction of the Laplacian matrix may fail. This problem might occur if the user is

working with scanned data which has not been preprocessed or smoothed. In this application in the

manufacturing process, triangulated CAD data is edited, thus the problem of degenerated data can be

shifted to an external programme. These programmes can be controlled in order to avoid degenerated

triangles. Hence, this problem is shifted to another type of application that is not handled in this thesis

and can be solved without great effort.

Another problem may be that Laplacian shape editing does not work with point sampled data. The

connectivity of the vertices must be known, in other words: a mesh must exist. However, the processed

objects are all constructed with CAD programmes and hence, they need to be transferred to the VR

framework “veo”. Therefore, the objects are approximated by a mesh. These are no drawbacks because

of the environment the application is used, but there is one disadvantage of differential coordinates: They

are not rotation invariant.

To solve this problem, there exist several approaches. In the surveying state of the art report [Sor05], Olga

Sorkine outlines that the approaches to approximate the rotation of the differential coordinates. In each

case the energy minimisation (4.2) function is extended to

E(V ′) = ‖LROI~x− Tδ‖2 +
m+h∑

i=m+1

‖wh(xi − hi)‖2 +
m+h+f∑

i=m+h+1

‖wf (xi − fi)‖2,

where T is a vector containing all the approximated local transformations Ti for each vertex i. These local

transformations approximate the rotation of the corresponding differential coordinate δi. One approach

has been done by Lipman et al. in [LSLCO05]. They execute the minimisation twice. At first, they

compute the new coordinates without transformation, and then they calculate Ti from the received results

by minimizing

min
Ti

∥∥Tixi − x′i
∥∥2 +

∑
j∈N(i)

∥∥Tjxj − x′j
∥∥2

 ,

where x′ are the new absolute coordinates derived from the first computation. This does not increase the

computation time strongly because the matrix L does not change and so there is only one additional back

substitution necessary. Olga Sorkine et al. [SLCO+04] enhanced this scheme by constraining the trans-

formation Ti. The free parameters of Ti are reduced to parameters describing an rotation with anisotropic
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(a) Original model (b) Bending without rotation of detail

vectors

(c) Bending with rotation of detail vec-

tors

Figure 4.6: Differences in bending strong details

scaling. This makes the transformation linear and hence it can be solved explicitly during the first step.

See [Ale05, SLCO+04, Sor05] for details about the construction and computation of Ti.

Another approach is used by Yu et al. and Zayer et al. [YZX+04, ZRKS05]. They approximate the

rotation of the differential coordinates, or the gradients in Yu et al.’s case, by propagating the handle trans-

formation to the neighbour vertices. Zayer built a harmonic map ranging from 1 to zero depending on the

mesh structure connection. Yu et al. stick to the euclidean distance of the vertices. In the implementation

according to this thesis, the rotations are propagated as well. The chosen method lies between Sorkine’s

and Yu’s method. It uses a distance function ranging from one for the handle vertices to zero for the fixed

vertices, such as the harmonic map of Zayer et al. According to this factor, the rotation is interpolated

by a spherical linear interpolation (slerp) for all vertices inside the ROI. Through the construction of the

ROI along the connections of the mesh, the impact of the handle depends both on the mesh topology and

on the euclidean distance. It is not necessary in this implementation to use a whole transformation matrix

because of the trisection of the available handle transformations.

A rotation of details also occurs on exaltations of a single vertex from a plane. The main application of

the software is a fine and precise translation on which no strong rotation of details occurs. Therefore, only

the rotation deformation case is processed with a rotation approximation of the detail vectors. Since in

industrial design, the details sometimes should not be rotated, this feature can be switched on and off by

the user. In Figure 4.6 the differences are pictured. We can see that the ear is rotated in the left image (c).

It keeps its orientation when the rotation is switched off like in the middle image (b). The trisection of

transforms and the other modelling aspects have been patterned on the basic functionalities of a classic

3D modelling software. However, in order to avoid long periods of training, the user interaction is kept

simple. The Laplacian mesh editing scheme supports this approach. In relation to the intended working

environment, there is the need for some controlling mechanisms for the user. The user should be able

to vary the deformations. Therefore, the weighting possibilities have been examined and extended. The

next chapter gives a review of these features.
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5 Effects of Weighting in Laplacian Mesh Editing

5.1 Introduction

As mentioned in the last chapter, the Laplacian mesh editing has to be extended in order to increase

the user impact on the deformations. Therefore weighting schemes are introduced. In the following

paragraphs, it is described how the Laplacian mesh editing scheme has been extended and alternative

methods of weighting have been submitted to a careful examination. At first, some simple and well

known examples for the usage of weights in general are described.

5.2 Common Applications of Weights

Weights are generally used in signal processing, for adapting the measurements to human needs. In the

following, several good examples are described which can be found in [Wik06]. It starts with measuring

the loudness of an audio signal. Here, a weighting filter is used to emphasise the frequencies around

3-6 kHz, which the human ear is most sensitive for, so that the measure of the loudness complies with

the human perception. There is also a special physical unit called “phon”, that only considers the signal

intensity at 1kHz. In this case, it can be spoken of a binary weighting scheme, where only one frequency

is considered and all the others are blocked. In signal processing, the terms weighting and filtering can

be swapped.

Another example is measuring the danger of radioactive γ-rays. Here, the strength of those ray frequen-

cies which cause the most harm on humans is considered more intensive than the frequencies which do

less harm. Due to this fact, the measure does not indicate the strength of the radiation, but its danger for

human beings.

A comparable method is the weighting of the colour channels red, green and blue in order to compute the

luminance of an RGB-signal. Due to the fact that the three base colours do not have the same luminance

in the human perception, they are weighted differently in order to balance their impact on the luminance

of the whole signal. The signal luminance

Y = 0, 299R+ 0, 587G+ 0, 114B

is a weighted mean of the colour channel intensitiesR,G andB. These values correspond to the so called

YUV-model. Without this weighting, it would not be possible to transform a colour signal into grey-scale

images with the same contrasts.

These examples showed that one main aspect in weighting is to adopt the measuring to the human sen-

sorial perception of signals. In the Laplacian mesh editing application, there is no need to transfer any

signal into a human recognizable region, but there is a need for the human user to determine the geomet-

rical impact or weight of some areas in the chosen ROI, in order to receive full control over the shape

deformation. How this works is described in the following section.
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5.3 Utilisation of Weights

There are two different approaches for the utilisation of weights. The first one adjusts the differential

coordinates to the mesh structure of the shape that should be deformed. The second one weights the

minimisation of the energy functional and for this reason, it has a strong impact on the deformation itself.

These weights are attached to vertices directly, and therefore, this method is called vertex weighting. In

the following, these two approaches are described.

Figure 5.1: An irregular mesh

5.3.1 Differential Coordinate Weighting

First of all, let us recall the Laplacian mesh editing scheme in short in order to get a general idea where

the weights are used. Suppose we have a mesh M = (V,E) with n vertices V and a number of edges E.

Recall equation 3.5

δi = ~pi −
1
di

∑
j∈N(i)

~pj ,

which describes the differential coordinate of a vertex i. This coordinate is constructed as the difference

of the position vector and the mean over all neighbouring vertices j. The vector ~p contains the absolute

coordinates of the vertices. As written in Section 3.4, this equation is extended with weights to

δi =
1∑
wij

∑
j∈N(i)

wij(~pi − ~pj). (3.7)

This opens many different possibilities for choosing the weights wij , which can be seen as a function

w : E → R+, where E is the set of edges and each edge is defined by the two vertices with the indices
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i and j. Therefore, this extension can be seen as the step from an unweighted graph to a weighted graph.

Considering meshes, we need to add some information about the geometry to the graph. This is the idea

behind the weighting schemes. An unweighted graph approximates the mesh satisfactorily, if and only

if all edges have uniform length. Such a mesh is called regular. Often, 3D shapes are triangulated into

nearly regular meshes. In this case, the impact of the weighting is not that big. However, in the main

application of this thesis triangulated CAD data is used. Such data is not triangulated regularly as shown

in Figure 5.1.

In order to avoid problems with this missing regularity, there really is a need for a well chosen weighting

scheme. The uniform weighting

wij = wUNI = 1

is just topologically correct, because only the connections inside the mesh are considered but not the

geometrical properties of the triangulation. However, for editing applications, geometric correctness is

necessary. The first and simplest approach for weighting is using the edge length l as the variant factor

for defining the weights. Both Gabriel Taubin and Koji Fujiwara [Tau95, Fuj95] use powers of the edge

lengths. This leads to wij = l(i, j)α, where α is a scalar. They both got the best results with α = −1.

That leads to the already mentioned scale-dependent umbrella operator with

wij = wSDU = 1/l(i, j).

In addition, the effect for α = 1, leading to

wij = wLEN = l(i, j),

has been considered as well.

Marc Alexa mentioned in his tutorial talk [Ale05] two other weighting schemes which are both based

on the angles of the adjacent faces: tangent and cotangent weighting. Remembering the angle notations

from Figure 3.4, there is the tangent or mean value weight

wij = wTAN =
1

l(i, j)
(tan

αij

2
+ tan

αij−1

2
),

which derives from the mean value coordinates of [FKR05]. Michael Floater defines the mean value

coordinates of a star shaped polygon as tangent weighted average of all edges inside the kernel of the

polygon. Starting from the proposition that the integral over all the normals of a sphere becomes zero, he

constructs the tangent weights. But according to the kernel approach, the tangent weights are only exact

for convex polygons. However, they are examined about their behaviour in this thesis.

The other weight mentioned by Marc Alexa is the cotangent weight

wij = wCOT = cot γj−1 + cotβj ,

deriving as explained in Section 3.4.1 from [EDD+95]. Table 5.1 illustrates an overview of the existing

weighting schemes. A general survey can be found in [Tau00].
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Name Definition

Uniform or umbrella wUNI = 1

Scale-dependent umbrella wSDU = 1/l(i, j)

Edge length wLEN = l(i, j)

Tangent wTAN = 1
l(i,j)(tan αij

2 + tan αij−1

2 )

Cotangent wCOT = cot γj−1 + cotβj

Handle vertices weights wh ∈ [1, 20]

Fixed vertices weights wf ∈ [1, 20]

Table 5.1: Overview of weights

5.3.2 Vertex Weighting

These are the different possibilities to influence the definition of differential coordinates. However, there

is a further option of weighting. Remembering the addition of rows to the submesh Laplacian LROI in

order to build up the matrix LE for the linear system LE~p = δ′. As mentioned in section 4.4.3.2, the at-

tached rows of LE can be multiplied by a weighting factor w. Each row has only one entry at the position

according to the index of the vertex, therefore, the weighting factor has an direct impact on the specified

vertex. In the implementation, it is possible for the user to control the weight w for the handle vertices

and for the fixed vertices. This restriction to weighting in these two groups makes the editing application

easier to handle on the one hand, and on the other one, it offers a simple controlling mechanism for the

transitions inside the ROI. In the following, wh stands for the handle weights and wf for the fixed vertices

weights. For better usability the user changes these weights with a slider and hence, the weights are kept a

natural number between 1 and 20, except in the automatic weight setting function which will be described

later in Section 5.5.

The weights control the smoothness of the boundary from their region in the ROI to the neighbour ver-

tices. The greater the value, the smoother the boundary. Due to the fact that triangulated surfaces always

have C0 continuity, the weights cannot be directly mapped to a degree of continuity. However, it can be

said that a weight w = 1 leads to C0, and w = 20 to a C2 continuity. The continuity depends additionally

on the transformation of the handle vertices. The user is able to deform the surface so strongly that all

transitions could become sharp edged if a small amount of vertices does not allow any smoothing. The vi-

sual impact of these weighting parameters is much bigger than the one of the weighting of the differential

coordinates. Figure 5.2 and Figure 5.3 show this visual effect. The image captions list the corresponding

weights. The blue cubes at the top of the peak highlight the handle vertices. In Figure 5.2, the sphere is

rendered as a mesh and the ROI is visible. The vertices which are marked yellow belong to the neighbour-

hood and the purple marked ones belong to the ring of fixed vertices. This sequence of images shows the

impact of the handle weights. Setting wh = 1 leads to a peak of only one vertex while the rest of the

sphere remains nearly unchanged. Increasing the weight smooths the peak into a bump. As Figure 5.3

is rendered with flat shading, the boundary conditions are easy to detect. Here, the weights for the fixed
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(a) wh = 1 (b) wh = 2

(c) wh = 5 (d) wh = 20

Figure 5.2: Exalting one vertex from a sphere with different handle vertices weights on constant fixed

vertices weight wf = 1

vertices do not remain constant and so, different transitions at the boundary of the peak appear. Both

image series show the strong influence of the vertex weights on the deformation. This influence allows

to control the deformation for the user. Imagine the following use case: The design engineer wants to

simulate the mounting of several plastic units. He knows that a mechanic easily can press the units if they

have to be pushed through a small gap. Imagine a large side area of a plastic tank which can be pressed by

hand for some millimetres. In order to simulate the pressing, the design engineer deforms the unit while

setting the weight in a way that simulates the behaviour of the plastic material. He selects some vertices

at the centre of the side where the mechanic would touch the tank. If the ROI is set to the whole side of

the tank so that the edges remain fixed, the weights should be set as follows. The handle vertex weight

is set to the maximum because the transition from the centre to the border should be smooth. The fixed

vertices weight is set small because the plastic is bent sharper at the edges of the tank. This imaginary

application demonstrates the advantage of vertex weighting.

The interval [1, 20] is chosen by heuristics. The upper boundary 20 is the limit of the impact by the
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(a) wh = 1, wf = 1 (b) wh = 20, wf = 1

(c) wh = 1, wf = 20 (d) wh = 20, wf = 20

Figure 5.3: Exalting five vertices from a plane with different vertex weights

weights. Figure 5.4 shows a weight of wh = 200. The image shows that it is not possible to significantly

increase the weighting effect in relation to wh = 20 in Figure 5.2(d). The chosen interval led to good re-

sults, despite the fact that Zhou et al. used a weighting in [0, 1] and had with 0.2 the best results [ZHS+05].

In addition, Figure 5.4 demonstrates the limitations of the vertex weighting scheme. A further increase

of the handle weight does not lead to a deformation in the shape of a dome. However, these limitations

are not relevant to the main application field of this software. For controlling the transitions between

areas of fine deformations and their surrounding regions, the vertex weighting scheme realises an easy

and intuitive tool. It is kept simple by enabling only two sliders which change the value of each weight.

Hence, the user is able to learn rapidly how the weights need to be adjusted in order to reach the intended

results.

5.4 Effects of Weighting

As seen in Figure 5.3, weighting the handle or fixed vertices has a strong impact on the surface continuity.

But, what about the impact of the differential coordinate weights?

In order to answer this question, consider Figure 5.5. Here, one vertex is pulled for 7mm from a thin plate.

The ring of fixed vertices is placed about 12mm around the handle vertex. The two images indicate the

difference between uniform and cotangent weighting with regard to the smoothness of the neighbourhood.
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Figure 5.4: Exaggerated weighting

(a) Uniform (b) Cotangent

Figure 5.5: Exalting one vertex from a plane with different weighting

Looking at the side of the peak, the smoothing effect is obvious. But where does it come from?

To answer this question let us look at the differential coordinates for the vertices on the plate. A plate

is flat, and hence there is no detail. The detail vectors or differential coordinates should be zero vectors

for each vertex. Let us consider the mesh structure of the plate the vertices are pulled from in Figure 5.6.

There are four different cases of vertex neighbourhoods. The vertices are emphasised by blue squares

and in addition, they are numbered so that the corresponding differential coordinate δi has i as the index.

The coloured areas around the vertices indicate the faces which are inside the one-ring and therefore are

considered in calculating the detail vector δi. In the cases i = 2, 3, 4, the differential coordinate is a zero

vector, independent of the kind of weight used. This can be deduced by the fact that the polygons around

the vertices are all rotation symmetric. From this symmetry, it follows that every face has the same edges

and angles. Due to the fact that the edge lengths and angles are considered in the computation of the

differential coordinate weights, the weights of one vertex are all equal. The differential coordinates are

defined by the sum of all edge vectors around these vertices in equation (3.7). This sum results therefore

in the zero vector.

However, when i = 1, and the polygon is not rotation symmetric, we have a different situation. For
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Figure 5.6: Mesh structure of plate

cotangent weighting, the four adjacent edges building a cross are weighted with w = 2, because all

considered angles have 45◦ and cot 45◦ = 1. The two transverse edges are weighted with w = 0, because

the angles considered are 90◦ and therefore, the cotangent is zero. Due to the fact that the weighted

edges build a cross, they even out each other. This leads to a zero detail vector δCOT
1 = ~0. If all edges

are weighted uniformly, the detail vector is non-zero, because the two transverse edges are not weighted

with zero like in the cotangent case. Thus, the detail vector directs along the bisecting line of the two

transverse edges and is one third of the cross edges length long. For this reason, it is valid that δUNI
1 6= ~0.

In regard to the continuous surface of the plate, the detail vector of all vertices should be zero. Hence, in

this case, the use of the cotangent weight compensates the drawback of the irregular meshing completely.

Examining this behaviour for the other weighting schemes leads to the following. The tangent weighting

Figure 5.7: Two exalted vertices from a sphere

is also incorrect in the case i = 1, but the detail vector is about the factor tan 22.5◦ ≈ 0.414 smaller

than with uniform weighting, and therefore, the error is significantly smaller. The parameter wLEN even

increases the error, because the two transverse edges are longer than the other ones, and therefore, they

are weighted in a more intense way. This fact leads to an error, which is slightly bigger than
√

2 ≈ 1.41.

If the edge length is used as weight with a negative power, like in the scale dependent umbrella weighting

approach wSDU , the error is reduced by the factor
√

2. Hence, there is a direct coherence between

the power of the edge length in the weighting scheme and the error factor. However, this behaviour is

only valid for this irregular triangulated coplanar surface. There is no prediction possible for arbitrary

triangulated surfaces. This argumentation is supported by the results shown in Figure 5.7. Here, two
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vertices are pulled out of a sphere which is triangulated regularly. There is no difference recognizable

between the two weighting schemes. In this example, all edges in the mesh have the same length, and in

addition all faces have the same corner angles, and therefore, all weights of the edges are equal and the

weighting has no effect.

This behaviour is important for working with triangulated CAD data. Here, the meshes are not regular.

(a) Original mesh (b) Original shape

(c) Deformed mesh (d) Deformed shape

Figure 5.8: Remeshing effect after fine deformation with cotangent weights

It seems obvious to use a weight through which the differential coordinates approximate the geometry as

good as possible. In Figure 3.3 it has already been shown that the use of uniform weighting can produce

differential coordinates that do not describe the geometric detail properly. However, the cotangent weights

have an additional effect.

The cotangent weight performs a kind of remeshing effect. This means that a deformation of the shape

using the cotangent weight in the definition of the differential coordinates makes the deformed mesh

much more regular than the original one. In Figure 5.8, this effect is pictured. The upper images show the

original data and the lower row shows the deformed shape. All vertices which belong to the neighbour

region inside the ROI are marked yellow. Especially, the yellow marked vertices below the blue cubes at

the rounded edge are displaced in a way that makes the triangulation much more regular. This remeshing

is performed only by displacement of vertices. This effect is positive because it smooths the deformed

surface additionally. The triangulation becomes more regular. A regular mesh has the advantage that even

unweighted differential coordinates approximate the detail precisely. The computed geometric weights

such as cotangent and tangent weighting become smaller for each edge and therefore, the numerical

stability of the minimisation increases.
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However, the remeshing effect of cotangent weighting does not need to be positive at all because this

remeshing can change the shape accidentally. Especially when fine deformations are executed in order

to preserve a given structure of a unit, this remeshing effect might destroy the shape by displacing the

neighbour vertices too strongly. An unwished smoothing then occurs. The examinations have shown that

the use of the cotangent weights for the differential coordinates is not mandatory. This fact is contrary to

the statements in literature [Ale05, Sor05]. In most of the papers it is written that the cotangent weights

do approximate the details best. That is true, but the effect the cotangent weights by remeshing the

surface inside the ROI has yet not been considered. The resulting remeshing might even distort a shape,

especially if it is tessellated strongly irregular. However, in this implementation the negative effects can

be avoided by the use of other weights such as umbrella weighting. Once again, the control is given to the

user. The user decides which weighting scheme is used and therefore, he controls whether a remeshing

effect should occur or not.

The last paragraph explained the effect of weighting the edges in the computation of the differential

coordinates in relation to the regularity of the triangulated mesh. Now, we will study the behaviour of the

vertex weighting. To do this, consider the minimisation function (4.2). We have

E(V ′) = ‖LROI~p− δ‖2 +
∑
i∈H

(wh(pi − hi))
2 +

∑
j∈F

(wf (pj − fj))
2,

where wh and wf are the weights that are examined in detail. hi and fi are the new vertex positions of

the handle vertices respectively the kept positions of the fixed vertices, while H and F are sets with the

according indices. The squares guarantee that each part is positive and hence each part must become

minimal. Therefore, the minimisation can be splitted into the three parts

‖LROI~p− δ‖2 → min,

‖wh(pi − hi)‖2 → min (i ∈ H),

‖wf (pj − fj)‖2 → min (j ∈ F ).

(5.1)

This representation shows how the weights wh and wf influence the solution. To approximate the impact

of the weights, it is necessary to check the size of the interval they are used in. Considering an error value

ε for each element of the solution vector ~p with

ε = |p̃i − pi| ,

where p̃i is the “correct” position, and pi the result of the minimisation. Hence, the frequency of this error

value must be checked. In the first part, there is the Laplacian LROI with the size m×m. But each row

has only d + 1 entries, if d is the valence of the vertex. Due to this fact, ε appears m(d + 1) times. In

the remaining two parts, the error value ε appears for each element of H respectively F . In conformity

with the definitions from Section 4.4.3.2, they occur f , respectively h times and are multiplied with their

weights. According to the condition from Table 4.1, after what f ≈ 0.1m, wf needs to be 10 · (d + 1)

times as large as the mean valence of the mesh in order to achieve the same influence on the minimisation

as the Laplacian.

These observations lead to the idea of automatic weighting. The question is, if it is possible to define a

function that sets the weights in a manner the deformation automatically becomes smooth.
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5.5 Automatic Weighting

(a) Selection (b) ROI definition (c) Pulling

(d) Interpolation (e) Result

Figure 5.9: Pulling the bunny’s ear by selecting only four vertices

How can the estimations from the last paragraph be used in order to enable an automatic weighting

option for the user? Testing the application pointed out that it is sometimes annoying to adjust the sliders,

if it is intended to deform the shape in a way which keeps all transitions inside the ROI smooth. There-

fore, the automatic weighting function has been implemented. According to the consideration about the

balances in the minimisation function (5.1), the vertex weights are set as

wf =
m(d+ 1)

f

and

wh =
m(d+ 1)

h
,

where d stands for the mean valence of all vertices in the ROI. This weighting has two advantages. On

the one hand, all three parts of the minimisation are balanced, and on the other one, a very fast and simple

surface editing mechanism is available. Using automatic weighting, it is possible to change a shape very

smoothly, without selecting a large amount of vertices. It is no more necessary to select the deformation

region exactly. It is sufficient to select only a few handle vertices and extend the neighbourhood until

the ROI defines the intended deformation area. Automatic weighting allows a smooth detail preserving

deformation.
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Figure 5.9 shows a practical example of a quick and simple editing task. Suppose the user wants to pull

the left ear of the bunny. The user selects only four, more or less arbitrary, vertices of the ear (a). Then the

neighbourhood ring is increased until the whole ear belongs to the neighbourhood. The region is marked

with the yellow stars (b). The purple stars mark the ring of the fixed vertices at the head of the bunny. In

the next step (c), the four vertices are translated to the intended position. After releasing the mouse button,

the new vertex positions are interpolated (d). After deselecting the ROI, it is clearly recognizable that the

ear is pulled, while its detail structure is kept (e). This example shows a very fast and efficient editing

task. This task can easily be transferred to the main application of deforming units in automotive design.

Instead of pulling an ear, some distant parts such as valves or other connections need to be deformed, be-

cause they block the mounting of a unit. In this case, the design engineer can easily select some vertices

of this distant part, increase the neighbourhood until the whole part is inside the ROI and push it in. The

automatic weighting scheme prevents complex selections for simple editing tasks.

The automatic weighting scheme has the additional benefit that there is almost no additional computation

time necessary. The mean valence is calculated during the construction of the Laplacian matrix, where

each valence has to be checked. Hence, there are only one multiplication and two divisions necessary to

compute each of the two weights. Due to these reasons, the automatic weighting enhances the intuitive-

ness of the user interaction in the system. It rapidly reduces the necessary experience of the user getting

satisfying results. In the next section, it is analysed upon which extent the weighting can control the

boundary conditions inside the ROI. To do this, the system is again compared with other shape editing

frameworks.

5.6 Boundaries through Weighting

(a) k = 1,membrane surface (b) k = 2,thin plate surface (c) k = 3,minimal curvature

variation

Figure 5.10: The order k defines the stiffness of the surface in the ROI, courtesy: [BK04b]

As mentioned in Section 2.4, Mario Botsch and Leif Kobbelt [BK04b] showed that the order of the

Laplacian, respectively to the energy functional, controls the transition inside the ROI. They examined

the first three degrees and this led to the results pictured in Figure 5.10. Based on the bending of a

cylinder, the alternative transitions are illustrated. In the left image (a), the bending is realised as a

direct connection. Only the connection points are considered but not the transitions at the boundaries.

In image (b) the transition is much smoother but the bending still looks unnatural. Only with the order

k = 3 in image (c) the bending has been realised in a natural way. In our implementation the Laplacian
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of degree k = 1 is used, and hence it should lead to the membrane surface solution. Such a transition is

not desired in the most cases because it creates sharp edges which do not represent natural behaviour if

a shape is pressed slightly for a task like assembling. Increasing the weights for the fixed and selected

vertices nearly equalises this drawback. In Figure 5.11 on the left side, the weights have been set equal

to one in order to reduce their impact. That led to transitions which look similar to them from the

membrane solution in Figure 5.10(a). On the right side, the weights have been increased to the maximum

and hence, the bending resulted in an stiffness that lies between the thin-plate surface and the minimal

curvature. These results showed that in this application, the weights can approximate the higher order

(a) wh = 1, wf = 1 (b) wh = 20, wf = 20

Figure 5.11: The vertex weights increase the stiffness

Laplacian. This has an enormous advantage because the use of higher order Laplacians implies a dense

linear system and for this reason, the efficiency of such systems decreases. With the extended weighting

scheme it is possible to dispense from the use of a higher order Laplacian if smooth transitions are

intended. The weighting scheme does not increase the computation time for solving the linear system.

Hence, the weighting enhances Laplacian mesh editing in such a manner that deformations become much

more natural. This high degree of naturalness is necessary to simulate the deformation tasks of mechanics

during the assembly. The addition of weights is therefore capable to simulate hand made deformations

that do not destroy the shape, and therefore, they are similar to what a mechanic does when assembling

or disassembling units.

Table 5.2 summarises the effects of each weight. The five differential coordinates weights are described

according to remeshing and smoothing. As mentioned, both effects are not clearly positive or negative.

They depend on the intentions of the user and the application. The two vertex weighting approaches,

handle and fixed weights, control the boundaries to the neighbour vertices. They support the volume

preservation by increasing the boundary region. The table is to give a review about the developed and

utilised weights in this thesis.
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Name Effect

Uniform or umbrella There is neither a remeshing nor a smoothing effect.

Well suited if the mesh structure is to maintain.

Scale-dependent umbrella Both remeshing and smoothing effects are latent.

Compromises uniform and cotangent weighing.

Edge length Leads to bad and distorting effects.

Tangent Strong remeshing and smoothing effect. Geomet-

rically not totally correct. Well suited for regular

meshes.

Cotangent Strong remeshing and smoothing effect. Geometri-

cally totally correct. Well suited for smoothing and

regularisation of the mesh.

Handle vertices weights Controls the boundary between handle and neigh-

bour vertices. Enables peak and dome deformation.

Supports volume preservation at bending operations.

Fixed vertices weights Controls the boundary between neighbour and fixed

vertices. Smooths outer ring of ROI. Supports vol-

ume preservation.

Table 5.2: Summary of weights
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6 Conclusion and Future Work

6.1 Conclusions

Purpose of this work was to develop a software for interactive systems to simulate deformations. The

implemented software is based on Laplacian mesh editing. The user is able to determine a ROI in order

to localise the editing process. A usual selection scheme is used which is easy to handle and allows a

precise localisation. With Laplacian mesh editing it is possible to deform 3D objects while their surface

details are preserved. Detail preserving is an important feature because it allows the simulation of realistic

deformations. Deformations on real objects normally do not destroy the detail structure of the objects’

surfaces. In the assembly simulation, the precise reproduction of mechanic tasks is fundamental. Due to

this fact, the contact handling in the simulation is very elaborate. However, simulating a realistic defor-

mation is much more complex than the contact of solid objects and thus, the deformation is kept highly

interactive.

In the implementation, the deformation is mainly controlled through the use of weights. The weights are

set by the user and they influence the deformation. The weights influence the boundaries and therefore re-

alise smooth boundary conditions. This has been implemented successfully in the context of deformations

during assembly simulations. Even for large deformations the influence of the weights is strong enough

to control the deformation sufficiently. However, the weights lose their impact if large deformations are

performed or if the mesh structures are too fine. This is a general drawback of the Laplacian mesh edit-

ing scheme because it considers only the one-ring neighbourhood of a vertex. The usage of weights can

only limitedly compensate this drawback. But an extension of the one-ring to define a differential coordi-

nate with stronger influence implies a dense linear system which can hardly be solved in real-time. The

weights do support the volume preservation. The effects are not as positive as the ones, Zhou et al. have

reached by introducing volumetric details, but the are adequate for fine mesh deformations. In addition,

the use of weights does not increase the computation time in contrast to the additional volumetric details.

Laplacian mesh editing is well suited for large scale and locally exact deformations at the same time. This

is a great advantage in respect to other mesh editing methods. FFD and its extensions do not allow exact

deformations. Multiresolution editing does not consider the mesh connection and have a disposition to

create unwished artefacts. Radial basis functions are as suited as Laplacians for mesh editing but they are

much more complicated and thus, there is a loss of flexibility. Users would need a long period of training

in order to understand the system and its parameters. The utilisation of weights in Laplacian mesh editing

is easy to learn and allows a broad spectrum of possibilities. The introduced weighting schemes are a

simple method to control and bias the mesh deformations. They are easy to manage and their impacts

are clear to the user. This makes the whole system very intuitive to use. Vertex weighting influences the

boundaries between handle and neighbour vertices on the one hand, and the transition from neighbour

vertices to them who remain fixed on the other one. The weights of the differential coordinate should be

chosen depending on the tessellation. The umbrella weighting does not consider the mesh tessellation and

thus, it does not construct precise details. The scale dependent umbrella operator weights the edges at the

construction of differential coordinates and therefore increases the geometric precision of the coordinates.

- 57 -



Chapter 6 - Conclusion and Future Work

Those weights who consider the angles of the edges, such as cotangent and tangent weighting, describe

the detail of the surface correctly. This leads to better results for asymmetrically tessellated surfaces as

shown in Section 5.4. In addition, the discussions throughout this thesis have also shown that the use

of the cotangent weights for the differential coordinates is not mandatory. As mentioned in Section 5.4,

these distortions must be avoided by the user selecting other weighting schemes.

The basic advantage of the programme developed in this thesis is that it is embedded in the VR frame-

work “veo” which is used for the assembly simulations. The software developed allows the user to edit

the shapes rapidly. The inclusion of a STL export makes the software a useful tool for rapid prototyping.

Due to these facts, the manufacturing process can be accelerated distinctly. From now on, design engi-

neers can easily do fine deformations during the VR simulation without switching the software. In order

to simulate deformations which are possible because of the elasticity of the units, the user can press and

deform objects within the VR software. The user does not need to transfer the object data to a complex

CAD environment, execute the deformations there and transfer the edited data back to the VR environ-

ment. This induces a great saving of time. These deformations can be simulated easily by the use of the

vertex translation along the mean normal direction from Section 4.4.1. The weighting schemes allows an

intuitive controlling mechanism that on the one hand enhances the deformation options, and on the other

hand allows throughout automatic weighting most common deformations without the need of adjusting

parameters by hand.

The system has been implemented aiming at maximum flexibility on minimum complexity of the user

interaction. The interactivity by user control makes the developed system usable for supporting the as-

sembly tests. The system provides all intended specifications from Table 1.1. The deformations are easy

to handle and hence, there is almost no additional training needed for the users. This aspect is supported

by the fact that the software is embedded in the already used VR framework as a so called surface de-

formation module. Especially for the intended tasks, such as small deformations along the normal, the

software works absolutely well.

The new system enhances the manufacturing or better said the prototyping process crucially. Avoiding

the indirection over the CAD system for changing a shape, and in addition enabling an STL formatted

export, makes the system predominantly suitable for testing purposes in automotive design.

However, the programme also has parts which need to be extended and improved in the future. The main

drawback of the implemented system might be the high computation time for the Cholesky decomposi-

tion. The Cholesky decomposition has not yet been optimised to the sparseness of the Laplacian matrix.

Due to the lack of a software library such as TAUCS [Tol03] which is used in several comparative solu-

tions [LSCO+04, LSLCO05, Sor05, SLCO+04], the deformation is limited to approximately thousand

vertices at interactive rates. If large areas are intended to be deformed, this limitation in speed is a great

drawback. Fortunately, the main application of this software will be locally precise deformations, so a

large amount of data to be computed will rarely occur.
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6.2 Future work

In the following, several feasible methods are introduced that can refine the implemented system. Some

of them base on the work of different authors, who have already been mentioned in the related work

section in Chapter 2. At first, the potentialities of sparse linear solvers are examined and after that, some

ideas of Mario Botsch and Leif Kobbelt are exposed. These ideas have been realised in their framework

[BK05] and are adaptable to this implementation as well. They include the fast calculation of the surface

normals on the fly and the translocation of several computations onto the GPU. After that, the including of

remeshing algorithms is examined and finally, observations about the combination of the editing system

with the collision detection are made.

6.2.1 Direct Linear Solvers

The main computation costs of the system are used by the interactive solving of the sparse linear system

in the least squares sense. As mentioned, solving sparse linear systems can be accelerated by the use of

a sparse matrix algorithms library. Olga Sorkine and Yaron Lipman recommend the use of the TAUCS

library [Tol03] developed by Sivan Toledo. This library is state of the art in solving sparse linear system

and is embedded in Mathematica 5 and Matlab 7. The main concept for sparse solvers is a decomposition

of the matrix in an upper and lower triangular matrix, like the Cholesky decomposition explained in Sec-

tion 3.7. The key for optimizing the methods is to reduce the fill-in. The fill-in is the amount of matrix

entries that change during the process from zero to non-zero. In case of TAUCS, a fill-reducing reordering

of the entries is done. For this reason, the computation time can be decreased. Yousef Saad [Saa96] de-

scribes the four phases of a typical sparse direct solution solver for positive definite matrices. It starts with

the mentioned preordering step to reduce the fill-in. There are two popular variants available: minimal

degree ordering and nested-dissection ordering. Factorisation is done symbolically and after that numer-

ically. The symbolic factorisation can estimate the fill-in. If numerical pivoting is necessary, these steps

are merged together. Finally, the system is solved by the already explained forward and back substitution.

Since the main steps are already implemented in this application, it would be necessary to use a faster

factorisation method that is optimised for sparse matrices. The next section deals with the computation

of the surface normals.

6.2.2 Normal Calculation

Deforming the shape of an object obviously changes its surface normals. Recomputing the normals is

essential for rendering, because otherwise the lighting will be computed wrongly. Currently, normals are

calculated newly from the changed vertex data. In Laplacian mesh editing only the new vertex position

after the deformation is known, not the transformation that led to this new position. In other frameworks,

e.g. [BK05], the deformation is expressed as a function F : R3 → R3. This makes it possible to compute

the new normals easily. If the new positions ~p′ are calculated by

p′i = F (pi),
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the transformation of the normals can be expressed as

n′i = detJF (JF (pi)−1)Tni,

where JF (pi) denotes the Jacobian of the deformation of the vertex pi, which is a 3×3 matrix constructed

by

JF (pi) =
[
∂F (pi)
∂x

,
∂F (pi)
∂y

,
∂F (pi)
∂z

]
,

where x, y and z are the values for each dimension of the coordinate. If the transformation of each vertex

is known, it is possible to compute the transformation of its normal with the help of the Jacobian of the

deformation. The new normal can be calculated by multiplying the original normal with the inverted

and transposed Jacobian of the corresponding vertex. Since the normal has unit length, the calculation

of the determinant value is obviously not necessary [Bar84]. The inversion of the Jacobian can be done

analytically and so the computation is really efficient. The problem in the Laplacian mesh editing scheme

is to find an exact or approximate Jacobian for each vertex transformation in order to calculate the normals

rapidly.

Currently, the normals need to be recalculated from the character of their surrounding surface regions. In

relation to the size of the deformed region, this can be very inefficient. In order to accelerate this task, the

normal computation could be combined with the creation of the differential coordinates. This approach

bases on the fact that the differential coordinate at each vertex has the same direction as the normal. So,

recomputing of the normals could be connected with the recalculation of the detail vectors when a new

ROI is selected. In the software presented in this thesis, normal recomputing has not been implemented

yet because the main interest has been laid in shape deformation and its effects for assembly simulations

and not on high quality rendering.

6.2.3 Porting to the GPU

As mentioned in Section 2.4 Mario Botsch and Leif Kobbelt developed a real-time shape editing system

[BK05] which makes intense use of the GPU. The key concept of their work is the previous computation

of basis functions which are sent to the GPU as textures. The new vertex positions are computed by a

simple displacement function which is implemented as a shader. Due to this fact, only a local control

frame which is comparable to the ROI data in this implementation has to be transferred in every step.

Through the decrease of data transfer and the parallelisation of computations, the system is accelerated

so that about 1.5 million vertices can be processed per frame. However, this approach is a volumetric

space deformation method and for this reason, it has problems with exact handling of discrete vertices.

Since we implemented a surface-based editing method, it would be possible to speed up the solving of

the sparse linear system by relocating calculations on the GPU.

There is a paper about solving large sparse system by Jeff Bolz et al. [BFGS03]. They introduce an

approach for solving sparse linear systems with the method of conjugate gradients. The sparse matrix

is stored in textures. There are only two operations necessary during this algorithm, namely a sparse

matrix-vector multiplication and the inner product of two vectors. For the sparse matrix-vector product

the matrix rows are gathered in groups of rows with the same number of entries. These groups can be

processed in parallel. For the inner product a sum reduction method is used that is based on
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“rendering a quadrilateral with half the dimension along either axis, summing four elements.”

From [BFGS03, p.4]

The GPU based algorithms developed by Bolz et al. can compute nearly twice as many matrix multipli-

cations as on the CPU at the same time. Hence, in future one might use such a GPU-based solver instead

of the Cholesky decomposition in order to speed up the system. First observations showed that there is

a high potential for optimisations through GPU programming, but also that it is not easy to transfer the

GPU based implementations for space-deformation techniques to surface based shape editing schemes.

6.2.4 Remeshing

Another problem that might occur during mesh deformation is the rigidity of the mesh topology. If small

features are pulled out of the surface for a large distance in relation to the triangles size, the triangles be-

come strongly distorted. Or, in the case of irregular meshes, the triangles are already distorted and there-

fore, they prevent the deformation in the intended smoothness. This problem could be solved by remesh-

ing. Remeshing simply means the change of the surface triangulation in order to increase the regularity

of the mesh. In contrast to the remeshing effect the cotangent weight can cause, remeshing algorithms

change the connections of the mesh. If some edges are too long or too short, the corresponding vertices are

merged or split. There are several papers about remeshing algorithms [AMD02, SG03, SAG03, VRS03].

However, in Laplacian shape editing, it is not possible to remesh dynamically because this would change

the Laplacian of the mesh. There is a dynamic mesh approach by Leif Kobbelt et al. [KBS00] for mul-

tiresolutional mesh editing and another one of him together with Mario Botsch [BK04a]. However, none

of them can be adapted to Laplacian mesh editing. The key is to find a fast and easy way for remesh-

ing on the one hand and for the corresponding change of the Laplacian on the other one. Currently, the

computational effort of remeshing methods is too big to be computable at interactive rates.

6.2.5 Combined Collision Detection

As mentioned in Section 1.1 the software developed is used for assembly tests. There is one future ap-

proach for the industrial usage of the system that needs to be implemented. One could combine collision

detection and contact simulation with the mesh editing algorithms in order to automate the deformation

of the components after the assembly tests. The system would then examine the contacts during the simu-

lation of the assembly and calculate the deformations that are necessary to enable a trouble free mounting.

One way of doing this is adding the tool metaphor to the modelling framework and regard one of the col-

liding objects as the tool and the other one as the modelling object. In this case the contact of the objects

directly causes a deformation. Another idea could be to compare the paths of the objects and analyse the

penetrations. All these approaches require an accurate description of the structural elements’ stiffness. It

is necessary to determine which object is flexible and how intense is its elasticity. The complexity of all

the approaches grows immediately if all possible cases of deformation and contact are considered. The

objects are of arbitrary shape and topology. A consideration of all components as solid primitives would

lead to a high degree of inaccuracy and would make the results unemployable.
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A possible extension of the modelling system would be a deformation restriction for the structural ele-

ments. Based on material characteristics, a stiffness factor could be added as an attribute for the deforma-

tion object. This factor could control the shape manipulation and avoid unrealistic deformations. During

long term utilisation of the system, a kind of database of different materials could be build up in order to

provide an additional deformation control for unskilled users.

There is a high potential to extend the system for automation and support of the manufacturing process.

It helps the user, but does not deprive the user of the full control over the components. The possible ex-

tensions and improvements presented in the last sections have not been implemented because they would

constitute enough material for a second diploma thesis.
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A Colour plates

(a) Bunny with lattice (b) Deformed lattice and bunny

Figure 2.1: FFD on the bunny model with a regular lattice

Figure 2.3: Sketch-based editing, courtesy: [NSACO05]
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Figure 4.1:A classic ROI selection on a sphere

(a) Selection (b) Initialize deformation (c) Pushing

(d) Further pushing (e) Result

Figure 4.2:Pressing an indent into a sphere
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Figure 4.3:The vertex transformations

(a) Original model (b) Bending without rotation of detail

vectors

(c) Bending with rotation of detail vec-

tors

Figure 4.6:Differences in bending strong details
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(a) wh = 1 (b) wh = 2

(c) wh = 5 (d) wh = 20

Figure 5.2:Exalting one vertex from a sphere with different handle vertices weights on constant fixed

vertices weight wf = 1
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(a) wh = 1, wf = 1 (b) wh = 20, wf = 1

(c) wh = 1, wf = 20 (d) wh = 20, wf = 20

Figure 5.3:Exalting five vertices from a plane with different vertex weights

Figure 5.4:Exaggerated weighting
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(a) Uniform (b) Cotangent

Figure 5.5:Exalting one vertex from a plane with different weighting

Figure 5.6:Mesh structure of plate

Figure 5.7:Two exalted vertices from a sphere
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(a) Original mesh (b) Original shape

(c) Deformed mesh (d) Deformed shape

Figure 5.8:Remeshing effect after fine deformation with cotangent weights
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(a) Selection (b) ROI definition (c) Pulling

(d) Interpolation (e) Result

Figure 5.9:Pulling the bunny’s ear by selecting only four vertices

(a) k = 1,membrane surface (b) k = 2,thin plate surface (c) k = 3,minimal curvature

variation

Figure 5.10:The order k defines the stiffness of the surface in the ROI, courtesy: [BK04b]
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(a) wh = 1, wf = 1 (b) wh = 20, wf = 20

Figure 5.11:The vertex weights increase the stiffness
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