Optical Tracking II

Research project

Emanuel Züger, Uwe Hahne
Overview

- Introduction
- Frustum reconstruction
- Low-cost optical tracking
- Conclusion and future work
Introduction

- Frustum reconstruction
 - ART
 - IR-beamer
- Low-cost optical tracking
 - webcams
 - cheap objects
Introduction

• Prior work
 – Optical tracking 1
 • Multi camera approach
 • ARToolKit
 • LED-Tracking
Frustum reconstruction

- Image processing with OpenCV
- Laserpoint tracking
- Camera calibration
- Building a lookup-table
Frustum reconstruction

- head/hand tracking system
- Using a rack of IR-emitters
- Reconstruction out of the deformed figure
Frustum reconstruction

- First analytical approach
 - The angle of the opposing edges is same as the difference to the perpendicular
Frustum reconstruction

- Second analytical approach
 - Building a equation system from the ratio of edges and angles of the pyramid
 - Worked but unsolvable
Frustum reconstruction

- Succeeded approach
 - Numerical solution
 - Powell’s direction set method
Frustum reconstruction

- demonstration
Low-cost optical tracking
Low-cost tracking

- cheap and simple components
 - webcams (Logitech Quickcam)
 - simple tracking devices
 (colored ball, fingertip, etc.)
Low-cost tracking

- Image processing
 - recognizing objects in the video-stream
 - critical part: accuracy depends on good segmentation
Low-cost tracking

• Camshift algorithm
Low-cost tracking

- Single camera approach
Low-cost tracking

- Draw-back single camera
 - object's size critical factor
 - camera resolution to low
 - deviation:
 - ~ 10 mm (10-20 cm distance)
Low-cost tracking

- Stereo camera approach
 - two computers
 - data exchange via TCP/IP
 - Stereo photogrammetry (triangulation)
Low-cost tracking

Results

- Accuracy:

![Graph showing deviation in cm against distance camera-object with intervals for accuracy: < 1.2 cm, ~ 1.6 cm, > 2.7 cm.](image)
Low-cost tracking

• Results

 - Performance
 - More hardware needed
 - restricted tracking-area

<table>
<thead>
<tr>
<th>Objects</th>
<th>Fps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>115</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>9,5</td>
</tr>
</tbody>
</table>

ATHLON XP 1800+
1024 Mb RAM
GeForce4 Ti 4600

Optical Tracking II
Uwe Hahne, Emanuel Züger
13. Februar 2003
Conclusion and Future work
Conclusion & Future work

- Three different approaches
 - efficiency
 - accuracy
 - complexity of calibration and installing
Conclusion & Future work

• Possible applications
 – Commercial use (e.g. ART)
 – Cooperation with Warhol-Shader project
 – Input device for the Virtual Showcase
Conclusion & Future work

• Suggestions for next project
 – Image processing: using other algorithms
 – Experiments with other tracking devices
End of presentation