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Abstract

Polygon meshes with 3-valent vertices often occur as the frame of free-form surfaces in architecture, in which rigid
beams are connected in rigid joints. For modeling such meshes it is desirable to measure the deformation of the
joints’ shapes. We show that it is natural to represent joint shapes as points in hyperbolic 3-space. This endows
the space of joint shapes with a geometric structure that facilitates computation. We use this structure to optimize
meshes towards different constraints, and we believe that it will be useful for other applications as well.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

The optimization of meshes for use in architecture has re-
cently received considerable attention. Most of this work
considers constraints on the shape of the faces [PLW∗07,
PSB∗08]. For example, asking for planar faces signifi-
cantly limits the space of possible shapes [CW07,YYPM11,
Vax12].

Here we consider the mesh to be a truss of connected
beams, i.e. a shell structure representing a surface with faces
that may not be planar and may have arbitrary degree. Not-
ing that it is easy to cut the beams to arbitrary length, we
focus on constraining the shape of the joints. Reducing the
number of edges to save weight and material leads to smaller
vertex degree or larger face degree [LLW15]. Consequently,
we limit the construction to use 3-valent joints, and then we
consider different constraints on the shape of the joint. The
main motivation for constraining the joints is that manufac-
turing individual joints for each node is expensive. Like con-
straining face elements in architecture, it is more economical
to restrict the joint shapes.

Figure 1 shows several existing types of joints: there are
standard constructions such as T-joints or 90 degree elbows
or more flexible space frame nodes, which are often de-
rived from regular polyhedra. Modifying the mesh so that
all nodes can be built from such existing joints could be
one strategy, albeit quite restrictive. We note that all com-

mon joints are manufactured by molding – and it would be
easy to generate other forms of 3-way joints by using molds
derived from the construction. This means the shape of the
joints would be optimized with the frame being given — an
approach that is the dual of [EKS∗10, FLHCO10, SS10].

We also believe it is easier to connect the beams if the
joint is symmetric, i.e., all incident beams subtend the same
angle. This property can be exploited to simplify the manu-
facturing process of joints. Moreover, meshes of symmetric
joints found interest in architectural geometry in the form of
“honeycomb structures” [?]. Consequently, we would like to
optimize the mesh such that all joint shapes have this prop-
erty.

While our approach is related and motivated by the men-
tioned works that optimize the faces of the mesh, there are
interesting fundamental differences: limiting the shape of the
faces also fixes the scale, while the shape of the joints is in-
dependent of the lengths of the beams, thus leaving more
flexibility for the possible constructions. Moreover, the con-
straints on faces are often invariant with respect to to reflec-
tions (i.e., faces are required to fall into congruence classes),
while for non-planar joints we are necessarily interested in
the shape, meaning we allow only invariance with respect to
rigid motions. This has implications on the representation of
joint shapes which we will discuss in Section 2.

Our work is based on the observation that Möbius trans-
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Figure 1: Real joints

formations succinctly describe the transformation between
joint configurations (see Section 3). Since we are interested
in the deformation, i.e., in the difference in intrinsic joint
angles, but not the rigid transformation between joints, we
factor out the rotation from the Möbius transformation. The
remaining factor is a Hermitian 2×2-matrix, and these form
a model of hyperbolic 3-space. In other words, a rotation-
invariant representation of joint shapes is given by points
in hyperbolic space. Among other useful properties, this in-
duces a natural metric on the space of joint shapes that al-
lows us to measure the deformation between them (see Sec-
tion 4).

The hyperbolic 3-space representation of trivalent joints
is not just the ‘right’ description from a purely mathemati-
cal point of view, it is also computationally convenient and
yields closed-form expressions for all the calculations we
need for optimization (Section 6), such as computing means
of joint shapes or projecting onto the closest symmetric con-
figuration. By using hyperbolic geometry and complex ma-
trices, the resulting computations are not only elegant, but
simple, direct, and fast.

This representation enables us to compute optimized
meshes by minimizing distances in hyperbolic space (Sec-
tion 7). We show several examples of optimized meshes and
eventually discuss the inherent limitations of the approach.

2. Shape space of joints: introductory remarks

The shape of a 3-valent joint can be specified by three dis-
tinct unit vectors e0,e1,e2 pointing in the directions of the
outgoing edges, which we may consider as points on the unit

sphere:

ek =

ex,k
ey,k
ez,k

 ∈ S2 ⊂ R3. (1)

This describes, however, not only the shape of the joint but
also its orientation (or attitude) in space.

A central question in our work is how to represent the
joint without considering its orientation. This representation
would allow us to identify when two (or more) joints have
the same shape. Moreover, we might use the representation
to endow the space of joints with a proper metric, which
would facilitate computations such as the mean of several
joints.

In the following sections we show that a clean way to do
this is by considering the relation of two joints as Möbius
transformations and then identifying the deformation part of
this transformation with a point in hyperbolic space. Choos-
ing an arbitrary joint configuration as “origin” makes shapes
of joints correspond to points in hyperbolic space and dis-
tance can be measured in this space. (The choice of a refer-
ence joint is as irrelevant for this representation as the choice
of an origin and a coordinate frame in Euclidean geometry.)
It may seem that this machinery is more involved than nec-
essary for practical purposes. For this reason, we briefly dis-
cuss two ideas that may come to mind for the purpose of
representing the shape of joints or their deformation – and
why they fail.

2.1. Angles – spherical geometry

It seems the shape of the joint could be described by
the angles between the edge directions, i. e., by φk =
arccos(eTk ek+1). The arccos-function requires deciding on a
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Figure 2: Mirrored joints (e0,e1,e2) and (e′0,e
′
1,e
′
2) are

identified with each other when represented by the corre-
sponding angles (φ0,φ1,φ2) between edges

preferred interval and it seems natural to ask that φk ∈ [0,π].
Under this assumption, considering the angles is equiva-
lent to represent the joint shape using the side lengths of
the spherical triangle spanned by the points ek on the unit
sphere.

The fundamental problem of this representation is that it
identifies mirrored joints with each other: a triangle is de-
scribed by its edge lengths up to congruence, which includes
reflections (see Figure 2). Reflections, however, are not rigid
motions so they represent different joint shapes.

Another potential problem of this representation is that
not every triple (φ0,φ1,φ2) identifies a joint shape: Apart
from 0 ≤ φk ≤ π, the sum of the angles is also bounded
from above by the planar configuration ∑k φk ≤ 2π; and side
lengths must obey the triangle inequality φk ≤ φk+1 +φk+2.
So optimizing an angle-based representation would always
have to be subject to these linear constraints.

2.2. Bases – Euclidean geometry

As angles are invariant under reflections it may seem natu-
ral to consider the unit vectors as a basis (e0,e1,e2). Since
we are interested in measuring the difference of two joint
shapes, one could compute the linear transformation be-
tween the bases

(e0,e1,e2) = A(e0,e1,e2) (2)

and then factor out the special orthogonal part using the polar
decomposition, i. e., A = RS. The deformation would then
be captured in S and could be measured by comparing S to
the identity.

This approach fails for planar joints, for which (e0,e1,e2)
is not a basis. In particular, note that cases such as T-joints
of the form e0 =−e1 could not be handled.
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Figure 3: Illustration of two joints (e0,e1,e2) and
(e′0,e

′
1,e
′
2) on S2 projected stereographically on the extended

complex plane Ĉ to Z and Z′. The Möbius transformations
fZ and fZ′ map the triples Z and Z′ to (0,1,∞) which is a
line on the real axis. The composition fZ,Z′ = f−1

Z′ ◦ fZ then
directly maps Z to Z′.

3. Joint configurations are related by Möbius
transformations

In this section, we will explain how Möbius transformations
can be employed to describe the difference n shape and ori-
entation between two joints. In particular, we will discuss
how to represent an arbitrary joint with respect to a reference
configuration. We will also review basic facts about these
transformations. Afterwards, we will explain how the de-
sired description of pure shape differences can be extracted
from the Möbius description of combined shape/orientation
differences.

By stereographic projection, we can conformally identify
the unit sphere S2 with the extended complex plane Ĉ=C∪
{∞}. Given a point on the unit sphere the mapping is given
by

S2 3 (x,y,z) 7→ x+ iy
1− z

∈ Ĉ . (3)

Hence, a 3-valent joint, given by three distinct unit vectors
e0,e1,e2, may be represented as a triple Z = (z0,z1,z2) of
distinct points in the extended complex plane. This repre-
sentation is the basis for all subsequent developments.

A Möbius transformation is an invertible mapping f :
Ĉ→ Ĉ of the extended complex plane Ĉ to itself given by

f (z) =
az+b
cz+d

, a,b,c,d ∈ C, ad−bc 6= 0. (4)

These transformations are important for us because for any
triple of distinct points, Z = (z0,z1,z2), there exists a unique
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Möbius transformation mapping it to (0,1,∞), namely

fZ(z) =
z1− z2
z1− z0

z− z0
z− z2

. (5)

Hence, the composition

fZ,Z′ = f−1
Z′ ◦ fZ . (6)

is the unique Möbius transformation mapping the triple Z to
an arbitrary other triple Z′ = (z′0,z

′
1,z
′
2) (see Figure 3). We

hence have:

• If triples Z and Z′ represent the shapes and orientations
of two joints by Equation (3), then the Möbius transfor-
mation fZ,Z′ represents the difference of their shapes and
orientations.
• With a fixed joint shape and orientation as reference,

Möbius transformations can be used to represent the
shape and orientation of any other joint: If the reference
shape/orientation is given by Z, then a Möbius transfor-
mation f represents the shape/orientation given by f (Z)=
( f (z0), f (z1), f (z2)).

In the following it will be useful to write Möbius transfor-
mations, and by the above identification also joints, as com-
plex 2× 2-matrices. This is analogous to how real 4× 4-
matrices are used in computer graphics to describe affine
and projective transformations. To this end, points in the ex-
tended complex plane Ĉ are specified using homogeneous
coordinate vectors in C2:

C 3 z→
(

z
1

)
= z ∈ C2, ∞→

(
1
0

)
= z, (7)

with two homogeneous coordinate vectors z,z′ ∈ C2 repre-
senting the same point in Ĉ if they are complex multiples of
each other:

z≡ z′⇐⇒∃λ ∈ C\{0} : z = λz′ . (8)

Using this homogeneous representation, the Möbius trans-
formation in Equation (4) corresponds to multiplication z 7→
Mz with the complex 2×2-matrix

M =

(
a b
c d

)
. (9)

Since this correspondence is only unique up to a non-zero
scalar factor, we normalize the matrix by requiring the de-
terminant |M| to satisfy

|M|= ad−bc = 1 . (10)

This makes the matrix representation unique up to sign: M
and −M still represent the same Möbius transformation.
Möbius transformations are thus represented by by elements
of the group SL(2,C) formed by complex 2× 2-matrices
with unit determinant. This description is convenient be-
cause a composition of Möbius transformations is repre-
sented by the product of the corresponding matrices and the
inverse of a transformation is represented by the inverse of
the matrix.

The normalized matrix representations of the Möbius
transformations fZ and fZ,Z′ defined in Equations (5) and (6)
are important for our calculations. These are

MZ =
1√
∆z

(
z1− z2 −z0(z1− z2)
z1− z0 −z2(z1− z0)

)
, (11)

with ∆z = (z0− z1)(z1− z2)(z2− z0) being the determinant
of the matrix on the right-hand side of the above expression,
and

MZ,Z′ = M−1
Z′ MZ . (12)

With the previous results that relate joints and their rela-
tive differences to Möbius transformations we can now sum-
marize:

• The matrix MZ,Z′ ∈ SL(2,C) represents the difference of
the shapes and orientations of two joints represented by
Z and Z′. (The matrix −MZ,Z′ represents the same differ-
ence.)
• With a fixed joint shape and orientation Z′ as reference,

the matrix MZ,Z′ ∈ SL(2,C) represents the shape and ori-
entation of a joint Z. (The matrix −MZ,Z′ represents the
same shape and orientation.)

Note that we represent a joint configuration Z by the
Möbius transformation that maps it to the reference config-
uration Z′. We do not use the inverse transformation, which
maps the reference configuration Z′ to Z. At this point, this
is just a matter of convention. But it will make a difference
in the following section, when we represent shapes and not
configurations of joints.

Also note that we have written Equations (3), (4), (5),
and (11) without using complex homogeneous coordinates
for points in Ĉ. Hence, they have to be modified if ∞ oc-
curs (or augmented with rules of “canceling infinities”). If
homogeneous coordinates are used throughout, one obtains
equations that do not require any special treatment of∞.

4. Joint shape space is hyperbolic 3-space

As we have seen in the previous section, the transformation
between two joints can be described by a Möbius transfor-
mation. We are interested in measuring how much deforma-
tion is present in such a transformation. That is, we would
like to ignore the rotational part of the mapping and have a
metric that only depends on the shape of the joint given by
the relative directions of the outgoing edges.

Our construction is based on the fact that Möbius trans-
formations also represent orientation preserving isometries
of hyperbolic 3-space H3, i.e., rigid motions in hyperbolic
space. This leads to a correspondence between the shape
space of joints and hyperbolic 3-space. In the following, we
will explain the details of this approach.
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4.1. Matrix model of hyperbolic 3-space

In the hyperboloid model of hyperbolic geometry, the hyper-
bolic 3-space H3 is given by

H3 = {h ∈ R4 | −h2
0 +h2

1 +h2
2 +h2

3 =−1, h0 > 0}. (13)

Distances in H3 are measured with the hyperbolic metric dH ,
which is defined in terms of the Minkowski inner product
〈·, ·〉3,1 as

coshdH(h,h′) =−〈h,h′〉3,1 = h0h′0−
3

∑
k=1

hkh′k . (14)

Equation (14) is analogous to how distances are measured
in spherical geometry, with the usual Euclidean inner prod-
uct replaced by the Minkowski inner product and the cosine
replaced with the hyperbolic cosine.

The most well known models of hyperbolic space are the
the Cayley–Klein model, the Poincaré ball model, and the
Poincaré half-space model. In the Cayley–Klein model, hy-
perbolic 3-space is represented by the open unit ball in R3,
and hyperbolic lines and planes are represented by inter-
sections of Euclidean lines and planes with the unit ball.
The Poincaré ball model also represents hyperbolic space
as the unit ball, but hyperbolic lines and planes are repre-
sented by circular arcs or diameters, and by spherical caps
or equatorial disks, respectively, all meeting the unit sphere
orthogonally. The Poincaré half-space model represents hy-
perbolic space as the upper half-space of R3, and hyper-
bolic lines and planes correspond to half-circles or verti-
cal lines, and to hemispheres or vertical half-planes, respec-
tively. The Poincaré ball and half-space models are con-
formal, i.e., hyperbolic angles are represented correctly. A
point h ∈ H3 of the hyperboloid model corresponds to the
point 1

h0
(h1,h2,h3) in the Cayley–Klein model, to the point

1
h0+1 (h1,h2,h3) in the Poincaré ball model, and to the point

1
2(h0+h3)

(h1,h2,1+h0 +h3) in the half-space model.

For our purposes, a less well known model of hyperbolic
3-space is more convenient. One can identify elements h =
(h0,h1,h2,h3) ∈ H3 in the hyperboloid model with positive
definite Hermitian 2× 2-matrices with unit determinant. In
components, the corresponding matrix H is given by

H =

(
h0 +h3 h1 + ih2
h1− ih2 h0−h3

)
. (15)

This identification is known as the matrix model of hyper-
bolic 3-space. Note how the unit determinant property is
equivalent to the hyperboloid equation:

|H|= (h0 +h3)(h0−h3)− (h1 + ih2)(h1− ih2)

= h2
0−h2

3−h2
1−h2

2 =−〈h,h〉3,1 = 1 .
(16)

Moreover, it follows that the determinant in the matrix
model is equivalent to the quadratic form induced by the
Minkowski inner product in the hyperboloid model. This
enables computing the Minkowski inner product from the

determinant using the polarization identity. Let H ∼= h and
H′ ∼= h′ be Hermitian matrices with their corresponding
points in the hyperboloid model, then the polarization iden-
tity yields:

〈h,h′〉3,1 = 1
2 (|H+H′|− |H|− |H′|)

= 1
2 |H+H′|−1 .

(17)

Furthermore, this shows that linear transformations of H that
preserve the determinant of Hermitian matrices are isome-
tries, because they preserve the Minkowski inner product.

Now, given any Möbius transformation represented by the
matrix M, it easy to see that the map

H 7→MHM∗ (18)

induces an isometry on H3: the map sends Hermitian matri-
ces to Hermitian matrices and, because |M| = 1, the deter-
minant and thus the Minkowski inner product are preserved.

In fact, one can show that the isometry (18) is orientation
preserving, and that every orientation preserving isometry
of H3 can be represented in this way by an SL(2,C)-matrix.
As with Möbius transformations, the representation is two-
to-one: M and −M represent the same rigid motion in hy-
perbolic space. Thus, there is a one-to-one correspondence
between Möbius transformations and hyperbolic rigid mo-
tions.

As the 2-sphere is the infinite boundary of hyperbolic 3-
space, the action of SL(2,C) on H3 also provides a short-
cut to calculate the action of an SL(2,C)-matrix M on the
unit sphere. Instead of projecting a point e ∈ S2 stereograph-
ically to a point z ∈ Ĉ, applying the Möbius transformation
f (z) with matrix M, and then projecting back to S2, one can
achieve the same result as follows: In homogeneous coordi-
nates (x0,x1,x2,x3), the equation for S2 is −x2

0 +∑
3
1 xk = 0,

so a point in S2 is homogeneously represented by a Her-
mitian matrix H with determinant zero. The image point is
MHM∗.

4.2. Rotations are represented by special unitary
matrices

If we identify the sphere S2 with the extended complex plane
Ĉ via stereographic projection (3), then the rotations of S2

correspond to the Möbius transformations with special uni-
tary matrices U ∈ SU(2), i.e., matrices of the form

U =

(
α −β̄

β ᾱ

)
, α,β ∈ C, |α|2 + |β|2 = 1, (19)

which satisfy UU∗ = I. This can be seen directly from (3):
First, note that a φ-rotation around the z-axis corresponds to
the Möbius transformation w 7→ eiφw with normalized ma-
trix

U3(
φ

2 ) =

(
exp( iφ

2 ) 0
0 exp(− iφ

2 )

)
.
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A little calculation using x2 + y2 + z2 = 1 shows that a π

2 -
rotation around the y-axis corresponds to the Möbius trans-
formation w 7→ w−1

w+1 with normalized matrix

U2(
π

4 ) =
1√
2

(
1 −1
1 1

)
.

Hence, a θ-rotation around the x-axis corresponds to the
Möbius transformation with matrix

U1(
θ

2 ) = U2(
π

4 )U3(
θ

2 )U2(
π

4 )
−1 =

(
cos θ

2 isin θ

2
isin θ

2 cos θ

2

)
.

Finally, note that every special unitary matrix (19) can be
represented as a product of the form

U3(
φ

2 )U1(
θ

2 )U3(
ψ

2 )=

 e
i
2 (φ+ψ) cos θ

2 ie
i
2 (φ−ψ) sin θ

2

ie
i
2 (−φ+ψ) sin θ

2 e−
i
2 (φ+ψ) cos θ

2

 .

This corresponds to the representation of an arbitrary rota-
tion in terms of the Euler angles (φ,θ,ψ).

This SU(2)-representation of rotations is closely related
to the better known quaternionic representation: in the ma-
trix representation of the quaternions,

i =
(

0 i
i 0

)
, j =

(
0 −1
1 0

)
, k =

(
i 0
0 −i

)
, (20)

the unit quaternions correspond to SU(2)-matrices.

4.3. From joint shapes to points in hyperbolic 3-space
(and back)

We are now ready to explain the representation of joint
shapes as points in hyperbolic 3-space. As explained in Sec-
tion 3, we choose an arbitrary but fixed joint configuration
Z′ as reference, and we represent any joint configuration Z
by the SL(2,C)-matrix MZ,Z′ . The shape of the joint Z is
then represented by the positive definite unimodular Hermi-
tian matrix

HZ,Z′ = MZ,Z′M∗Z,Z′ , (21)

i.e., by a point hZ,Z′ ∼= MZ,Z′ in hyperbolic 3-space H3.

To see that the point hZ,Z′ really represents the shape, con-
sider joint configurations Z1, Z2 that differ only by a rotation.
Then

MZ2,Z′ = MZ1,Z′MZ2,Z1 ,

where MZ2,Z1 ∈ SU(2), as explained in Section 4.2. Now
MZ2,Z1 M∗Z2,Z1

= I implies HZ2,Z′ = HZ1,Z′ . Thus, configu-
rations of joints with the same shape correspond to the same
point in hyperbolic space.

Conversely, any point in hyperbolic 3-space determines a
unique joint shape, i.e., the point determines a joint configu-
ration up to rotation. This is easily seen using polar decom-
position: Given a positive definite Hermitian 2×2-matrix H

with unit determinant, we are interested in finding SL(2,C)-
matrices M satisfying

H = MM∗. (22)

Since any SL(2,C)-matrix M has a unique polar decomposi-
tion M=PU, where P is a positive definite Hermitian matrix
with unit determinant and U∈ SU(2), and since MM∗ = P2,
the solutions of (22) are precisely the matrices

M = H
1
2 U, (23)

where U is an arbitrary special unitary matrix. The solutions
of (22) therefore represent a class of joint configurations that
are related by rotations, i.e., they represent a unique joint
shape.

If we are just interested in finding some joint configura-
tion corresponding to a given point in hyperbolic space, we
may as well choose U = I in (23), i.e., M = H

1
2 . Taking

the square root is particularly easy in this case: Elementary
computations show that for any 2×2 matrix X we have that
(X+ |X|I)2 is a scalar multiple of X. Since H has unit deter-
minant by construction, we can compute the desired Möbius
transformation M from H as

M =
1√
|H+ I|

(H+ I). (24)

4.4. Distance in shape space, invariance with respect to
the choice of reference configuration

Since we represent joint shapes as points in hyperbolic
space, it is a natural idea to measure the distance between
the shapes of two joints Z1, Z2 by the hyperbolic distance
between the corresponding points in H3:

d(Z1,Z2) = cosh−1(−〈hZ1,Z′ ,hZ2,Z′〉3,1
)
. (25)

At first sight, it may seem that this shape space metric de-
pends on the choice of reference configuration Z′, but in fact
it does not. If we use a different reference configuration Z′′

instead of Z′, the shape of a joint Z is represented by HZ,Z′′

instead of HZ,Z′ (see (21)). Since MZ,Z′′ = MZ′,Z′′MZ,Z′ ,
the representations are related by

HZ,Z′′ = MZ′,Z′′HZ,Z′M∗Z′,Z′′ .

But the map H 7→MZ′,Z′′HM∗Z′,Z′′ is an isometry of hyper-
bolic space (see (18)). Thus, a different choice of reference
frame changes the representation by a hyperbolic isometry.
Distances remain the same. Moreover, angles are also pre-
served, as well as are straight lines and planes. This will be
important when we consider the spaces of planar and sym-
metric joints.

Since the hyperbolic measure of distance between the
shapes of two joints Z, Z′ does not depend on the choice of
reference configuration, we may as well choose one of the
joints, say Z′, as reference. Then the configuration Z′ is rep-
resented by the identity matrix I, so the shape is represented

submitted to COMPUTER GRAPHICS Forum (3/2016).



R. Richter et al. / Constrained Modeling of 3-valent Meshes Using a Hyperbolic Deformation Metric 7

Im

Re

Im

Re

a)

b)

z1’

z2’
z0’

z1

z0

z2

z1’

z2’

z0’

z1

z0
z2

Figure 4: Two subspaces of joint configurations in the stere-
ographic projection (magenta): a) the subspace of symmet-
ric configurations ˙̈Z and b) the subspace of flat configura-
tions Z . The reference frame ˙̈Z = (z0,z1,z2) (red) is by def-
inition flat and symmetric. An instance (z′0,z

′
1,z
′
2) of each

subspace is shown in green.

by (1,0,0,0) ∈ H3, and the distance between the shapes of
Z and Z′ is

d(Z,Z′) = cosh−1(−〈(1,0,0,0),hZ,Z′〉3,1
)

= cosh−1 h0.
(26)

5. The subspaces of symmetric and flat joint shapes

As mentioned in the introduction, we believe it is useful to
constrain the joint shapes to some specific set of shapes. For
example we might want all joints to be threefold rotationally
symmetric (three equal angles between edges). Up to rota-
tion, we may denote the set of symmetric joint shapes as

˙̈Z = {(z0,z1,z2), z̄0z1 = z̄1z2 = z̄2z0}. (27)

Or, we may want to ask that all joint shapes are flat, i. e., all
edges lie in a common plane. We denote the set of flat joint
shapes as

Z = {(z0,z1,z2), z̄0z0 = z̄1z1 = z̄2z2 = 1}. (28)

We wish to characterize such joint shapes in a way that al-
lows us to compute the distance of an arbitrary joint shape
to the closest symmetric or flat one. In other words, we are
interested in the subspaces of symmetric and flat joints; and
an orthogonal projection onto these subspaces.

As it turns out, both spaces can be described succinctly
relative to the flat symmetric reference joint

˙̈Z =

(
−1,

1+
√

3i
2

,
1−
√

3i
2

)
. (29)

In Figure 4 the reference joint ˙̈Z is shown in red color and
the subspaces in magenta. The subspace of symmetric joints
˙̈Z is a linear subspace as illustrated by lines in Ĉ (4a). The

unit circle in 4b marks the subspace of all flat configurations.

Effectively, the flat symmetric reference frame lends a ge-
ometric meaning to the coefficients of h: as we show next, h3
can be identified with the non-flat symmetric configurations,
while h1,h2 span the subspace of flat configurations.

5.1. Symmetric configurations

Equation (27) implies that up to rotations, any element of ˙̈Z
is an isotropic scale of the flat symmetric configuration ˙̈Z or,
in other words, up to rotation each element of ˙̈Z is the result
of applying a Möbius transformation of the form

Ms =

(
s 0
0 s−1

)
(30)

to ˙̈Z. Now let us represent a joint configuration Z relative
to ˙̈Z, i.e., by M−1

˙̈Z
MZ . If ˙̈Z ∈ ˙̈Z is symmetric, then this trans-

formation consists of a rotation (i.e., the unitary factor) and
the isotropic scale shown above, which necessarily corre-
sponds to H. Thus, for symmetric configurations ˙̈Z ∈ ˙̈Z we
have

h ˙̈Z, ˙̈Z = (h0,0,0,h3) ∈ H3, ˙̈Z ∈ ˙̈Z. (31)

Hence, by Equation (25) the inner product between an arbi-
trary Möbius transformation H3 3 h∼= Z to ˙̈Z and a symmet-
ric ˙̈h∼= ˙̈Z ∈ ˙̈Z is given by

cosh
(
d
(
Z, ˙̈Z

))
=−〈h, ˙̈h〉3,1 = ˙̈h0h0− ˙̈h3h3. (32)

Thus, to find the symmetric joint closest to Z, we need to
vary h0,h3 so that this inner product is minimal, subject to
the hyperboloid condition h2

0− h2
3 = 1. Elementary compu-

tations show that the solution is to set h1 = h2 = 0 and to
rescale h0,h3 to satisfy the hyperboloid condition, i.e.,

argmin
˙̈h=( ˙̈h0,0,0, ˙̈h3)∈H3

d(h, ˙̈h) = (h2
0−h2

3)
−1/2(h0,0,0,h3). (33)

The distance from an arbitrary Z ∼= h ∈ H3 to the closest
symmetric configuration ˙̈h ∈ H3 is therefore given by

d(h, ˙̈h) = cosh−1
(√

h2
0−h2

3

)
. (34)
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Note that this distance is the same for any cyclic permuta-
tion.

5.2. Flat configurations

The reasoning for flat configurations is similar to the situa-
tion for symmetric configurations, we therefore omit redun-
dant details. The symmetric flat configuration ˙̈Z is taken to
any other flat configuration, up to rotation, by Möbius trans-
formations of the form

M f =

(
a b
b̄ a

)
=

(
h0 h1 + ih2

h1− ih2 h0

)
. (35)

This means, flat configurations Z ∈Z can be are represented
(relative to the symmetric flat configuration) as

hZ, ˙̈Z = (h0,h1,h2,0) ∈ H3, Z ∈ Z. (36)

In analogy to the situation for symmetric configurations, the
projection onto the closest flat configurations is performed
by setting h3 to zero and lifting back to the hyperboloid, also
giving the distance to the closest flat configuration as

d(h,h) = cosh−1
(√

h2
0−h2

1−h2
2

)
. (37)

Concluding we note how the joint representation relative to
˙̈Z spans the space of joint shapes in an intuitive way: The
axes h1 and h2 describe the deformation away from sym-
metric configurations and the axis h3 represents deformation
away from flat configurations.

6. Computations for k-means

The hyperbolic 3-space representation of trivalent joints de-
veloped in the last two sections is not just natural from a
mathematical standpoint but also beneficial for the compu-
tations closest joints and, more particularly, k-means.

6.1. Computing means

It is useful to be able to compute the mean shape of a set of
joints efficiently. We can do this based on the representation
of the joints in H3. Let m joints be given by {Hi} or, re-
spectively, {hi}, and denote the mean by H̄, or h̄. In analogy
with Euclidean spaces, a widely adopted way to generalize
the mean to Riemannian manifolds is to define it as the min-
imizer of squared distances to the m points; this view and its
origins are nicely discussed by Karcher [Kar14].

Karcher’s analysis leads directly to a gradient descent al-
gorithm for computing the mean (which has appeared in sev-
eral guises in the graphics literature) that employs the expo-
nential map to account for the true distances along the man-
ifold. Interestingly, however, Karcher mentions that for sur-
faces with constant (sectional) curvature, such as the hyper-
boloid in our case, one may also use the (Minkowski) inner
product as the measure of distance in the space, as the result-
ing definition of the mean is isometric invariant and that is

all one can reasonably expect. For a sphere, this would result
in embedding the sphere in Euclidean space, then taking the
mean in ambient space and projecting back to the sphere. As
we know well the results of this procedure are very similar
to taking means on the sphere, especially for points close to
each other.

For the hyperboloid model of hyperbolic space this leads
to the following definition of the mean:

h̄ = argmin
h′∈H3

∑
i
−〈h′,hi〉3,1. (38)

This minimization is easily solved by interpreting it as a con-
strained minimization in R4. Let xi = hi be points with Eu-
clidean mean x̄ in R4. The desired solution x should addi-
tionally satisfy x2

0−∑
3
k=1 x2

k = 1. This yields the Lagrangian

L(x,λ) = ∑
i

(
x0xi0 −

3

∑
k=1

xkxik

)
+λ

(
x2

0−
3

∑
k=1

x2
k −1

)
.

(39)
Setting the gradient

∇L = ∑
i


xi0
−xi1
−xi2
−xi3

+2λ


x0
−x1
−x2
−x3

 (40)

to zero shows that a necessary condition for the solution is
x = µx̄, i.e., a scalar multiple of the arithmetic mean of the
points in R4. Then the hyperboloid constraint identifies the
solution as

x =
(
−〈x̄, x̄〉3,1

)− 1
2 x̄. (41)

Thus, we take the mean of points in H3 by taking the arith-
metic mean in the ambient R4 and then normalizing the re-
sult using the Minkowski inner product.

6.2. Computing the closest joint

In the definition of the hyperbolic joint deformation distance
in Equation (26) we have assumed a fixed identification of
the outgoing edges of the joints. In practice this will usu-
ally be unnecessary and we would like to allow cyclic per-
mutations of the edges when comparing between joints (see
Figure 5). To this end, let

Zc = (zc,zc+1,zc+2) (42)

where indices are taken modulo 3. The distance we will often
be interested in is then

d̂(Z,Z′) = min
(

d
(
Z0,Z′

)
,d
(
Z1,Z′

)
,d
(
Z2,Z′

))
. (43)

Note that this distance function is, by taking the minimum
of continuous functions, itself continuous.

Given joints in a mesh we would like to efficiently com-
pute for each of them the closest joint from a fixed set of N
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Figure 5: The joint deformation distance depends on the
identification of the outgoing edges between both joints Z
and Z′ (top row). In practice, this identification is unnec-
essary and we therefore define the distance as the smallest
distance to all cyclic permutations (Z0,Z1,Z2) of Z. In this
example the best fits between Z′ and the cyclic permutations
of Z are illustrated in the bottom row. The permutation ex-
hibiting the smallest distance is Z0 in this case.

configurations {Z0, . . . ,ZN}, for example generated in a k-
means approach. For each mesh joint we need to determine
distances to {Z0

0 ,Z
1
0 ,Z

2
0 ,Z

0
1 , . . .} over all N joints in the set

and all cyclic permutations.

This may seem expensive, however, we can precompute
the vectors {h0

0,h
1
0,h

2
0,h

0
1, . . .} for the set of (cyclic permuta-

tions of) the given joint configurations. Then for each mesh
joint Z̄ its hyperbolic representation hZ̄ needs to be deter-
mined to compute the distances using Equation (25). Note
that cosh−1 is monotone and hence finding the closest joint
in fact only requires computing the Minkowski inner prod-
uct.

7. Optimizing meshes

Let a dual triangle mesh be defined by vertex positions
V = {vi ∈ R3} and edges E = {(i, j) ∈ {1, . . . , |V|}2}. We
denote the oriented edge vector between vertices i and j as
ei j = vi− v j. Normalized edge vectors can be used to com-
pute Möbius transformation as described in the preceding
sections. We denote by hi ∈ H3 the joint shape representa-
tion for vertex i so that there is a unique mapping from V to
{xi}.

With the formulation we detailed in the last sections, a
dual triangle mesh with desired joint configurations can be
generated by minimizing the distances to target joint shapes.
We may further constrain the vertex positions to be on or

near a desired surface, and we usually fix the combinatorics
of the mesh.

Now, independent of what the desired shape of a joint
should be, in any instance we can prescribe the edge vec-
tors of a joint, up to their individual lengths and a common
rigid transformation. This is a setup that fits the strategy used
in ARAP [SA07] / ShapeUp [BDS∗12]: we consider the ro-
tation in a joint and the lengths of edges as additional vari-
ables. Then we minimize the distance of the joint shapes to
the desired ones as a function of vertex positions, rotations,
and edge lengths. In a local step, we update the edge vectors,
based on the constraint of the joint shape, and then by match-
ing the edges with a rotation and scale to the current vertex
positions. In a global step, we optimize the vertex positions
such that the squared distance to the desired edge vectors
is minimal. Since the energy is minimized in each step, this
approach often yields a local minimum. More general justifi-
cation for this approach is given by Bouaziz et al. [BDS∗12].

A minor difference is that we compute the optimal rota-
tion and edge lengths based on the ideal joint shape and the
vertex positions in the last iteration: given the current edge
vectors ei j pointing from vertex i to any neighbor j, we first
project the joint shape hi onto the constraint set yielding up-
dated edge vectors e′i j – the details of this step are discussed
in the following sections. Note that this step will generally
lead to different oriented edge vectors e′i j 6= −e′ji. Now we
find scaling factors so that the updated edges have the same
length as the old edge vectors, i. e.

si j =
‖ei j‖
‖e′i j‖

. (44)

Then we align the old and the new frame by a rotation
Ri ∈ R3×3 in euclidean space that minimizes the squared
differences

argmin
RT

i Ri=I
∑

(i, j)∈E
‖ei j−Risi je′i j‖2, (45)

which can be computed using SVD [SA07]. Based on these
edge vectors we can then solve the linear system describing
the minimizer of

argmin
V

∑
(i, j)∈E

‖vi−v j−Risi je′i j‖2+

‖v j−vi−R js jie′ji‖2.

(46)

The optimization towards the different constraints on the
joints only differs in how the edge vectors e′i j are computed
to reflect the desired joint shapes. We describe this next.

7.1. Symmetric and flat joints

Projecting the joint shapes onto the closest symmetric or flat
joint shape follows directly from the derivation in Section 5.
In each iteration of the optimization, we compute the closest
constrained joint shape for each of the joints. Given edges ei j
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Figure 6: Optimization for symmetric joints: Hexagonal input mesh with colorized joints indicating the distance to the nearest
symmetric configuration (red corresponds to high distances). a) Input mesh b-d) Result after 1,10 and 100 iterations. The
distribution of angular deviation w.r.t. the nearest symmetric joint is shown in the histograms.

a) b)

c) d)

e) f)

Figure 7: Optimization for planar joints: a) Hexagonal in-
put mesh with colorized joints indicating the distance to
the nearest planar configuration (red corresponds to high
distances). b-f) The joints are optimized iteratively toward
planar configurations (number of iterations from b to f:
0,10,20,30,100).

for vertex i we normalize the edge vectors, perform stereo-
graphic projection and then MZi (Equations (3) and (9)). Us-
ing the precomputed M−1

˙̈Z
we generate the hyperbolic point

relative to the symmetric flat configuration:

hi = (hi0 ,hi1 ,hi2 ,hi3)
∼= Hi = M−1

˙̈Z
MZi M

∗
Zi(M

−1
˙̈Z

)∗ (47)

Then we get the updated joint shape representation by taking
either

h′i =
√

h2
i0 −h2

i3(hi0 ,0,0,hi3), (48)

or

h′i =
√

h2
i0 −h2

i1 −h2
i2(hi0 ,hi1 ,hi2 ,0) (49)

for the case of symmetric, resp. flat joint shapes. This yields
M′i = Hi + I, which represents a Möbius transformation that
maps the flat symmetric frame ˙̈Z to the symmetric configu-
ration we are interested in. Note that the matrix representa-
tion is not normalized (compare to Equation (24)), but this is
irrelevant since we are computing with homogeneous coor-
dinates. We apply this transformation to ˙̈Z and get the homo-
geneous coordinates of the desired symmetric frame, which
we turn into (unit) vectors of R3 back projecting onto the
sphere.

Together with the procedure described above this is all
we need to optimize meshes to consist only of symmetric or
flat joints. Examples are shown in Figures 6, 7, and 8. Fig-
ure 6 shows the optimization of a mesh without boundary
towards symmetric joint shapes. The histograms and color
coding how the joints converge to be perfectly symmetric,
while only moderately deviating from the original shape. In
Figure 7 we demonstrate successfully modifying the joint
shapes of a torus to be all planar up to numerical precision
(while the faces are necessarily not planar). Note the inter-
esting duality to the torus of planar hexagons (but non-planar
joint shapes) of Li et al. [LLW15, Figure 12].
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Figure 8: If all joint shapes are symmetric and faces are
nearly planar, face degree takes the role of discrete curva-
ture. We show this here by starting with trivalent meshes of
varying face degree (left). After optimization for symmetric
joint shapes irregularity of face degree is clearly exhibited
in the geometry (right).

We wish to stress that near-planar faces and symmetric
joint shapes result in heavy dependence on face degree (see
Figure 8, which then represents a discrete measure of curva-
ture. A similar effect can be observed if we optimized trian-
gles in a triangle mesh to be equilateral [IGG01].

7.2. Discrete joint shapes

Given a set of k joint shapes {h̄ j} (for example, the joints
shown in Figure 1), our goal is to optimize the mesh such
that it consists of these joints only. For each vertex, we com-
pute the joint shape representation hi and then find the joint
shape h̄ j that minimizes the distance d̂(hc

i , h̄ j), i. e. the dis-
tance considering all cyclic permutations c ∈ {0,1,2} of the
joints. As explained in Section 6 we precompute the cyclic
permutations for all target joint shapes. Then we set the edge
vectors of each vertex to the corresponding joint shape of the
nearest element in {h̄ j}.

However, we can also follow recent work in the literature
that aims at representing a surface using a small set of rep-
resentative facets [EKS∗10,FLHCO10,SS10], optimized for
the given surface, yet for the joint shapes.

To generate the set H̄k = {h̄ j} of representative joints h̄ j
we cluster the individual mesh joints and compute represen-
tative joint shapes for each group by k-means: the computa-
tions alternate between two basic steps: (1) assigning each
joint to the nearest representative joint in H̄k, and (2) com-
puting the mean of each group and updating H̄k. All compu-
tations take place in hyperbolic space H3: for nearest neigh-

bor computations we employ the hyperbolic distance and
computing means is done as detailed in section 6.1.

In our implementation we repeat (re-)assignment and
cluster updating typically 10 times. In most cases this is
sufficient to reach a local minimum. However, we observed
that the solutions are sensitive to the choice of initial data.
Instead of the standard random initialization we employ k-
means++ [AV07] sampling, which yields more robust solu-
tions.

The results of the optimization for the dual of the Lil-
ium tower roof model for different k is shown in Figure 9.
In a) the colored vertices indicate the closest reference joint
h̄ j ∈ H̄k computed on the input mesh. To visualize the joints
and their assignments to the closest mean we project all
hi ∈ H3 (and their cyclic permutations) to the Poincaré ball
model of hyperbolic space (Figure 9c,d). The assignments
resulting from computing k-means on the initial mesh joints
is shown in c) with the same colors used in a). The cyclic
permutations of each joint are displayed in the same color
while only the closest of the three possible permutations de-
termines the assignment. The results after iteratively opti-
mizing vertex positions in order minimize the distances to
the reference set H̄k are shown in b) and d). In b) the colored
vertices indicate the distance to the assigned reference joint.
Note that the distances to the optimal joint shapes decreases
with an increasing number of reference joints. In d) one can
see that the optimized joints xi form clusters in H3.

8. Discussion

We have derived a rotation-invariant representation of 3-
valent joints in hyperbolic 3-space H3 that endows their
shape space with a natural deformation metric. The hyper-
bolic representation facilitates computation and, in particu-
lar, yields simple expression for important quantities such as
the distance to the closest rotationally symmetric configura-
tion.

The hyperbolic joint space metric enables us to optimize
dual triangle meshes for joint constraints using the ShapeUp
optimization framework. Another option might be to start
with an appropriately constrained mesh and then explore the
space of admissible meshes [YYPM11]. We have demon-
strated that it is possible to optimize meshes to use a dis-
crete set of joint shapes as well as symmetric or flat joints
(see Figures 10 and 11 for additional results). The orienta-
tion of the joint shape unconstrained has been left uncon-
strained in our experiments. Restricting flat joints to lie in
a common plane would directly lead to a parameterization
approach [LZX∗08].

We feel that the central contribution of our work lies in
identifying hyperbolic geometry as a powerful representa-
tion for the shape of frames. We believe that this can be ap-
plied to scenarios beyond the one considered here such as:
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Figure 9: Optimization for discrete joint shapes with different number of reference joints (k = 3,5,10): a) Initial mesh and
discrete joint assignment, b) Optimized vertex positions w.r.t. Ek. Color indicated angular deviation to assigned reference joint
at each vertex (red: high deviation). c-d) Visualization of joints hi ∈ H3 in the Poincaré ball model with initial joints (c) and
optimized joints (d).
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a) b) c)

d) e)

f)

Figure 10: Joint optimization: Input meshes a) and d) are optimized toward flat joint configurations (see Sec 7.1). The colored
vertices indicate deviation from flatness (red: high deviation). The resulting meshes are shown in b) and e). The mesh f) is
the result of optimizing input mesh c) to consist of joints from a discrete set only (see Sec 7.2). The color in f) identifies the
assignment to the respective joint in the set.

a) b)

c) d)

Figure 11: Optimization results: a) Input: dual triangle mesh. b) Optimized toward discrete joint set: Colors indicate as-
signment of vertex joints to reference joint in the set (Sec 7.2). c) Optimized for symmetric joint configurations (Sec 7.1). d)
Optimized toward flat joint configurations (Sec 7.1).
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• A triangle mesh can be used as a free-form surface in ar-
chitecture for so called point-folding structures where a
pyramidal shape is supported over each triangle. Manu-
facturing costs for such surfaces can be reduced by re-
stricting the possible pyramidal shapes. As shown in pre-
vious work [ZCBK12], this can be done by clustering the
shapes. Our hyperbolic 3-space representation can be em-
ployed for pyramid shapes and the algorithm for k-means
clustering of joint shapes described in Section 7.2 is ap-
plicable.
• Instead of representing three edges incident to a vertex

in hyperbolic 3-space, one may also represent three nor-
mal vectors. The normals could, for example, describe the
local neighborhood of the point, and hence provide a lo-
cal descriptor of the surface in hyperbolic 3-space. This
representation would again be invariant to rotation, trans-
lation, and scale, and be minimal for this invariance. In
fact, Möbius geometry has already been used successfully
for symmetry detection [KLCF10] or establishing corre-
spondence [LF09].

References
[AV07] ARTHUR D., VASSILVITSKII S.: k-means++: The advan-

tages of careful seeding. In ACM-SIAM symposium on Discrete
algorithms (2007), pp. 1027–1035. 11

[BDS∗12] BOUAZIZ S., DEUSS M., SCHWARTZBURG Y.,
WEISE T., PAULY M.: Shape-up: Shaping discrete geome-
try with projections. Computer Graphics Forum 31, 5 (Aug.
2012), 1657–1667. doi:10.1111/j.1467-8659.2012.
03171.x. 9

[CW07] CUTLER B., WHITING E.: Constrained planar remesh-
ing for architecture. In Proceedings of Graphics Interface 2007
(New York, NY, USA, 2007), GI ’07, ACM, pp. 11–18. doi:
10.1145/1268517.1268522. 1

[EKS∗10] EIGENSATZ M., KILIAN M., SCHIFTNER A., MI-
TRA N. J., POTTMANN H., PAULY M.: Paneling architectural
freeform surfaces. ACM Trans. Graph. 29, 4 (July 2010), 45:1–
45:10. doi:10.1145/1778765.1778782. 1, 11

[FLHCO10] FU C.-W., LAI C.-F., HE Y., COHEN-OR D.: K-
set tilable surfaces. ACM Trans. Graph. 29, 4 (July 2010), 44:1–
44:6. doi:10.1145/1778765.1778781. 1, 11

[IGG01] ISENBURG M., GUMHOLD S., GOTSMAN C.: Connec-
tivity shapes. In Proceedings of the Conference on Visualiza-
tion ’01 (Washington, DC, USA, 2001), VIS ’01, IEEE Com-
puter Society, pp. 135–142. URL: http://dl.acm.org/
citation.cfm?id=601671.601691. 11

[Kar14] KARCHER H.: Riemannian center of mass and so called
karcher mean, 2014. arXiv:1407.2087. 8

[KLCF10] KIM V., LIPMAN Y., CHEN X., FUNKHOUSER T.:
Möbius transformations for global intrinsic symmetry analysis.
Computer Graphics Forum (Symposium on Geometry Process-
ing) 29, 5 (July 2010). 14

[LF09] LIPMAN Y., FUNKHOUSER T.: Möbius voting for surface
correspondence. ACM Trans. Graph. 28, 3 (July 2009), 72:1–
72:12. doi:10.1145/1531326.1531378. 14

[LLW15] LI Y., LIU Y., WANG W.: Planar hexagonal meshing
for architecture. Visualization and Computer Graphics, IEEE
Transactions on 21, 1 (Jan 2015), 95–106. doi:10.1109/
TVCG.2014.2322367. 1, 11

[LZX∗08] LIU L., ZHANG L., XU Y., GOTSMAN C., GORTLER
S. J.: A local/global approach to mesh parameterization. In
Proceedings of the Symposium on Geometry Processing (Aire-la-
Ville, Switzerland, Switzerland, 2008), SGP ’08, Eurographics
Association, pp. 1495–1504. URL: http://dl.acm.org/
citation.cfm?id=1731309.1731336. 11

[PLW∗07] POTTMANN H., LIU Y., WALLNER J., BOBENKO A.,
WANG W.: Geometry of multi-layer freeform structures for
architecture. ACM Trans. Graph. 26, 3 (July 2007). doi:
10.1145/1276377.1276458. 1

[PSB∗08] POTTMANN H., SCHIFTNER A., BO P., SCHMIED-
HOFER H., WANG W., BALDASSINI N., WALLNER J.: Freeform
surfaces from single curved panels. ACM Trans. Graph.
27, 3 (Aug. 2008), 76:1–76:10. doi:10.1145/1360612.
1360675. 1

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface
modeling. In Proceedings of the Fifth Eurographics Symposium
on Geometry Processing (Aire-la-Ville, Switzerland, Switzer-
land, 2007), SGP ’07, Eurographics Association, pp. 109–
116. URL: http://dl.acm.org/citation.cfm?id=
1281991.1282006. 9

[SS10] SINGH M., SCHAEFER S.: Triangle surfaces with discrete
equivalence classes. ACM Trans. Graph. 29, 4 (July 2010), 46:1–
46:7. doi:10.1145/1778765.1778783. 1, 11

[Vax12] VAXMAN A.: Modeling polyhedral meshes with affine
maps. Comp. Graph. Forum 31, 5 (Aug. 2012), 1647–1656.
doi:10.1111/j.1467-8659.2012.03170.x. 1

[YYPM11] YANG Y.-L., YANG Y.-J., POTTMANN H., MITRA
N. J.: Shape space exploration of constrained meshes. ACM
Trans. Graph. 30, 6 (Dec. 2011), 124:1–124:12. doi:10.
1145/2070781.2024158. 1, 11

[ZCBK12] ZIMMER H., CAMPEN M., BOMMES D., KOBBELT
L.: Rationalization of triangle-based point-folding structures.
Comp. Graph. Forum 31, 2pt3 (May 2012), 611–620. doi:
10.1111/j.1467-8659.2012.03040.x. 14

submitted to COMPUTER GRAPHICS Forum (3/2016).

http://dx.doi.org/10.1111/j.1467-8659.2012.03171.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03171.x
http://dx.doi.org/10.1145/1268517.1268522
http://dx.doi.org/10.1145/1268517.1268522
http://dx.doi.org/10.1145/1778765.1778782
http://dx.doi.org/10.1145/1778765.1778781
http://dl.acm.org/citation.cfm?id=601671.601691
http://dl.acm.org/citation.cfm?id=601671.601691
http://dx.doi.org/10.1145/1531326.1531378
http://dx.doi.org/10.1109/TVCG.2014.2322367
http://dx.doi.org/10.1109/TVCG.2014.2322367
http://dl.acm.org/citation.cfm?id=1731309.1731336
http://dl.acm.org/citation.cfm?id=1731309.1731336
http://dx.doi.org/10.1145/1276377.1276458
http://dx.doi.org/10.1145/1276377.1276458
http://dx.doi.org/10.1145/1360612.1360675
http://dx.doi.org/10.1145/1360612.1360675
http://dl.acm.org/citation.cfm?id=1281991.1282006
http://dl.acm.org/citation.cfm?id=1281991.1282006
http://dx.doi.org/10.1145/1778765.1778783
http://dx.doi.org/10.1111/j.1467-8659.2012.03170.x
http://dx.doi.org/10.1145/2070781.2024158
http://dx.doi.org/10.1145/2070781.2024158
http://dx.doi.org/10.1111/j.1467-8659.2012.03040.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03040.x

