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Abstract

Anisotropic centroidal Voronoi tessellations (CVT) are a useful tool for segmenting surfaces in geometric modeling.
We present a new approach to anisotropic CVT, where the local distance metric is learned from the embedding of the
shape. Concretely, we define the distance metric implicitly as the minimizer of the CVT energy. Constraining the
metric tensors to have unit determinant leads to the optimal distance metric being the inverse covariance matrix of the
data (i.e. Mahalanobis distances). We explicitly cover the case of degenerate covariance and provide an algorithm to
minimize the CVT energy. The resulting technique has applications in shape approximation, particularly in the case
of noisy data, where normals are unreliable. We also put our approach in the context of other techniques. Among
others, we show that Variational Shape Approximation can be interpreted in the same framework by constraining the
metric tensor based on another norm.

1. Introduction

Centroidal Voronoi tessellations (CVT) have become
an important tool for segmenting surfaces in geomet-
ric modeling. It has been shown that using anisotropic
Voronoi cells has advantages for representing surfaces
with anisotropic principal curvatures [1, 2, 3]. Yet,
this requires the surface to carry information on the
anisotropy (such as the curvature tensor).

In this work, we propose an alternative technique for
defining the anisotropy in centroidal Voronoi tessella-
tions. Our main observation is that the embedding of the
surface provides this information. The local metric on
the surface is well-approximated by an ellipsoid in am-
bient space, whose axes are aligned with the principal
curvature axes [4]. Intuitively, these ellipsoids are the
local anisotropic metric of the Voronoi cells. We con-
strain these ellipsoids to have the same volume. Then,
minimizing the CVT energy (see Section 2) means min-
imizing the total volume of the ellipsoids, leading to el-
lipsoids that adapt to the surface data locally and, thus,
represent its anisotropy. Hence, we define the local met-
ric as the minimizer of the CVT energy.

We minimize the energy with a descent approach in
the spirit of Lloyd’s method [5] (see Section 3). This
requires computing a locally optimal location and met-
ric for a fixed cell. We show that this optimal metric is
the inverse of the covariance of the data in each cell. In
other words, the distance metric in each cell turns out
to be the Mahalanobis distance [6] for each cell (up to

scale).
We apply our technique to generating polygonal

meshes from triangulated surfaces (see Section 4)
and compare it to Variational Shape Approximation
(VSA) [7]. Our approach is particularly well suited for
tolerating noise. It could also be applied directly to sur-
face represented as point sets, i.e. coming from depth
images.

Our approach shows several connections between
techniques we have not yet seen discussed in the litera-
ture: CVT, Gaussian mixture models fitted with expec-
tation maximization (EM) [8] and VSA. We make these
observations concrete in Section 5. These connections
suggest that CVT will benefit from advances on EM in
the machine learning literature.

2. Background and setup

The goal of CVT is to decompose a set S ⊂ Rn into
subsets Si. Each subset Si is defined as the set of points
p ∈ S closest to a site or generator xi:

Si = {p : d(xi,p) < d(x j,p),∀ j , i}. (1)

The positions of the sites are governed by the functional

F(x0, . . . , xk−1) =
∑

i

∫
Si

d2(xi,p) dp. (2)

The local minima of F are called centroidal Voronoi tes-
sellations with respect to d.
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The classical choices for the distance function d(xi,p)
are the Euclidean distance in ambient space [5], the
intrinsic distance along geodesics [9] (assuming S is
equipped with a suitable metric) or the Euclidean dis-
tance in higher-dimensional space [10]. In the literature,
however, several variants have been suggested:

• The integrand in F (rather than d) depends on p. A
simple case is an isotropically weighted Euclidean
distance, i.e.

dp(xi,p) = ρ(p)‖xi − p‖. (3)

This is commonly used for stippling, e.g. [11].
More general are anisotropic weights [2, 3]

d(xi,p) =
(
(xi − p)TM(p)(xi − p)

) 1
2 , (4)

where M is a symmetric matrix representing a met-
ric tensor varying over S.

• An additive constant in the distance function

d(xi,p) = ‖xi − p‖ + ci (5)

leads to power diagrams [12], whose centroidal
version also has been used for stippling-type ap-
plications [13, 14].

• Modification of the distance based on a metric ten-
sor defined per cell Si [1]

d(xi,p) =
(
(xi − p)TMi(xi − p)

) 1
2 . (6)

In all approaches above, the modification of the metric
is based on auxiliary data attached to the set S — in
other words, it is part of the input to the minimization.

Our formulation of the minimization problem is iden-
tical to the last modification, i.e. each Si is defined by a
location xi and a metric tensor Mi ∈ Rn×n. However, in
our approach the Mi are themselves minimizers of the
functional

F(x0, . . . , xk−1,M0, . . . ,Mk−1) =∑
i

∫
Ωi

(p − xi)TMi(p − x j) dp. (7)

Minimizing F without extra constraints results in the
trivial solution Mi = 0. To guarantee that the unit dis-
tance ellipsoids cannot degenerate, we constrain the de-
terminant of Mi to unity. Our objective is thus

min
Mi=MT

i ,|Mi |=1
F(x0, . . . , xk−1,M0, . . . ,Mk−1). (8)

Next, we discuss how to compute the minimization.

3. Optimization

Our general strategy is similar to Lloyd’s ap-
proach [5]: start with xi randomly sampled from S and
Mi = I and then repeat the following steps until conver-
gence:

1. Compute cells Si for fixed xi,Mi based on Eq. 1.
2. Optimize xi,Mi for fixed Si based on Eq. 8.

We note that in each step the functional F cannot in-
crease. Hence, the algorithm is guaranteed to find a lo-
cal minimum.

For reasons of exposition, we start with the derivation
of xi,Mi. Where necessary for concrete algorithmic ex-
planations, we consider S to be given as a triangulated
surface.

3.1. Computing the local distance metric
We now consider the problem of finding the local

centroids and local metric tensors for fixed cells Si. The
optimization can be performed per cell and we drop the
index i for convenience. Our objective is

min
x,M=MT,|M|=1

∫
(p − x)TM(p − x) dp. (9)

To solve this problem, we consider the Lagrangian

L =

∫
(p − x)TM(p − x) dp + λ (|M| − 1) (10)

and set the gradient w.r.t. the unknowns to zero. Doing
so for the location x yields

0 =
∂L
∂x

=

∫
M(p − x) dp = M

(∫
p dp − x

∫
1 dp

)
(11)

which gives the well known fact that the location x that
minimizes squared distances is the (weighted) centroid,
regardless of the metric tensor. That is we have

x =

∫
p dp∫
1 dp

. (12)

For taking the gradient w.r.t. M we note that

∂(p − x)TM(p − x)
∂M

= (p − x)(p − x)T ([15], Eq. 72)

and
∂|M|
∂M

= |M|
(
M−1

)T
. ([15], Eq. 49)

Denoting the covariance matrix as

C =

∫
(p − x)(p − x)Tdp. (13)
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Let us write the necessary condition for the derivative
of the Lagrangian as

0 =
∂L
∂M

= C + λ|M|
(
M−1

)T
. (14)

Assuming C is non-singular, we can denote the solution
as

M = |C|
1
n C−1, (15)

where the scale factor |C| 1n ensures |M| = 1, as desired.
Note that the desired symmetry of M follows from the
symmetry of C.

This solution is a continuous analogy (up to scale) to
the Mahalanobis distance [6]. How C can be computed
for a set of triangles is described in the appendix. Fig-
ure 1 illustrates the distances on the surface to the sites,
as well as the corresponding covariances C and metric
tensors M as ellipsoids.

3.2. Degenerate sites and anisotropy
To obtain the solution for the local metric M in Eq. 15

we had to assume that the local covariance matrix is
non-singular. However, in practice it can occur that the
variance in one or more directions is zero. Note that it
is a feature of our approach that it generates cells that
are close to this condition. Hence the situation will nat-
urally occur and we cannot ignore it or treat it merely as
a numerical problem.

To understand the problem better, consider the eigen-
decomposition

C = D diag(λ0, . . . , λn−1) DT. (16)

Note that the eigenvalues λ j are real and non-negative
because C j is real symmetric and positive-semidefinite.
We assume them to be in decreasing order. Degeneracy
of a cell corresponds to one or more of the eigenvalues
being zero. Without loss of generality, we assume ex-
actly one eigenvalue to be zero, i.e. λn−1 = 0.

As before, it is desirable that the distance weighting
is inversely proportional to the variance for those di-
rections with non-zero variance. For the direction with
zero-variance, there is no obvious choice for distance
weighting. This means M is of the form

M = DT diag(λ−1
0 , . . . , λ−1

n−2, γ) D. (17)

Together with the condition |M| = 1 this yields a one-
parameter family of solutions dependent on γ. Increas-
ing γ, decreases all other eigenvalues indirectly through
the constraint

1 = |M| = λ−1
0 · · · λ

−1
n−2γ (18)

Figure 1: Top left: Illustration of the Mahalanobis distance between
vertices and the associated cell centroid (red shade equals distance).
Top right: Interpolated covariance matrix visualized by ellipsoids
within each cell. Bottom left: Computed metric tensor visualized by
ellipsoids within each cell. Bottom right: Computed regions, i.e. in-
tersections of cells with triangle mesh.

and, thus, decreases the sum of weighted squared dis-
tances. Consequently, the minimum is attained for γ →
∞.

In order to define a finite solution for the metric in all
cases we modify the covariance of cells. Intuitively, we
assign a small ε-ball to the empty cell. We make the size
of this ball relative to the largest eigenvalue of C. So,
conceptually, we re-define the covariance of a site to be

C′ = (1 − ε)C + ελ0I, (19)
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Figure 2: The colored edges illustrate the shortest paths originating
from the cell centroids under the respective cell metric (left). The
orignal triangle mesh is subdivided by cutting edges which intersect
with cell boundaries (left, center). By subdividing the original mesh
each face can be uniquely assigned to a cell (right).

which, conveniently, yields the standard isotropic model
for ε = 1.

This effectively means the inverse eigenvalues are de-
fined as

λ+
j =

(
(1 − ε)λ j + ελ0

)−1
, (20)

which is well-defined because λ j ≥ 0, as explained
above. We hence have for the metric tensor of a site:

M =

n−1∏
j=0

λ+
j


− 1

n

DT diag(λ+
0 , . . . , λ

+
n−1) D. (21)

3.3. Computing the cells

The anisotropic distance measure leads to compli-
cated cells. We are only concerned with the restriction
of the cells to S. We assume that the surface is given
as a triangulation and use the combinatorial structure to
define neighborhoods along the surface. Based on this
connectivity, we re-define the restricted cells to be the
simply connected component of the surface containing
the site xi (similar to [16]).

The global structure of the algorithm is as follows:
first, we assign each vertex in the triangulation to one
of the sites, essentially by a Dijsktra-like traversal; sec-
ond, edges with vertices assigned to different sites are
identified and an intersection point on the edges is com-
puted; third, on triangles with three intersected edges a
Voronoi vertex is approximated.

Assigning vertices. As a first step, we identify a rep-
resentative vertex for each site xi, which is the closest
vertex to xi (we assume that this assignment identifies
distinct vertices for the xi; if not, sites are discarded).
To reduce the computational complexity of this step, we
generate a kd-tree over the vertices for nearest neighbor
search. The key step in nearest neighbor search based

on kd-trees [17] is culling a sub-tree if the squared dis-
tance

d2
i (p) = (xi − p)TMi(xi − p) (22)

of any point p in the half space represented by the sub-
tree to xi is larger than the squared distance of the cur-
rent best candidate vertex [18]. Because the distance
measure is strictly convex, this means computing the
distance between xi and the plane representing the half
space satisfying nTp > c. For a point on the ellipsoid
having critical distance to the plane nTp = c its normal
must be parallel to n. The normals on the distance ellip-
soid are parallel to the gradient of the distance function

∂di(p)
∂p

= Mi(xi − p), (23)

so the point on a plane with normal n closest to the dis-
tance ellipsoid around xi has to be on the line defined by

Mi(xi − p) = µn ⇒ p(µ) = µM−1
i n − xi. (24)

Intersecting this line with the plane nTp = c yields µ as

µ =
c + nTxi

nTM−1
i n

. (25)

The closest point on the plane is obtained by evaluating
the parametric line at µ. This point can then be evaluated
for its distance di(p(µ)), which is used for culling sub-
trees.

The vertices are added to a priority queue based on
their squared distance to the closest site. The front el-
ement in the queue is processed as follows: the vertex
is assigned to the closest site i. For all neighbors of the
vertex the weighted squared distance to xi is computed.
Conceptually, vertices are added with the computed dis-
tance to the queue if they a) are not queued already or b)
the computed distance is smaller than the distance cur-
rently associated with the vertex. In practice, it is easier
to always add a vertex to the queue and discard vertices
that have already been assigned to a site. After process-
ing all queue elements we have a complete assignment
of vertices to cells (see Figure 2, left).

Computing intersections. For a better approximation of
the cell regions on the mesh, we subdivide the origi-
nal mesh by splitting edges lying on region boundaries.
Those edges are identified by comparing the cell assign-
ments of the incident vertices. If they are different, the
edge intersects the boundary of both cells. In this case
we approximate the intersection by a bisection method
and add a new vertex at this position (see Figure 2, left
and center).
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Figure 3: Changing parameter ε effects the cell shapes and thus the
final segmentation. For ε near zero the cells adapt to geometry of the
mesh. For larger ε the cells get more isotropic and finally (ε = 1)
approach Voronoi properties.

If all edges of a triangle are intersected, we assume
the restriction of the Voronoi edge to the surface is in-
side the triangle (which may or may not be the case).
We approximate the location of the Voronoi vertex on
the surface as the centroid of the intersection points on
the edges.

Intersecting edges and adding Voronoi vertices on tri-
angles induces new triangles. In this augmented trian-
gulation, each triangle can be uniquely assigned to a cell
(see Figure 2, right).

We note that this piecewise linear approximation to
the true restricted Voronoi cells (apart from having ap-
proximate geometry) might be topologically incorrect.
In particular, we restrict the topology of the Voronoi
complex on each edge to at most two cells meeting in
one point; and on each triangle to at most three cells
meeting in one point. If the true topology of the Voronoi
complex is more complex than this, it is necessarily sim-
plified by the approximation. However, as long as the
Voronoi complex is coarse relative to the triangulation,
we have not observed any adverse effects resulting from
the piecewise linear approximation.

4. Evaluation & Applications

4.1. Controlling cell shapes

The parameter ε (see Section 3.2) influences the
shape of the cells and thus the final segmentation of
the mesh. By setting ε = 0 we approach the limiting

Figure 4: Segmentations generated by our algorithm (left) and Vari-
ational Shape Approximation with L2,1 metric (right). The original
mesh (top) was modified by applying a distortion function on ver-
tex positions in normal direction with different intensities of Gaussian
noise (middle: s = 0.001, bottom: s = 0.002, see Section 4.2). One
can observe that our algorithm is more robust against noise than VSA.

case where the metric tensor is computed by the un-
modified covariances of each cell. As a result, the op-
timized cells maximally adapt to the local geometry of
the mesh. However, to avoid degenerate cells in planar
regions (singular covariance matrices) we have to set ε
to be greater than zero. In order to generate more com-
pact cells, we choose higher values for ε, i.e. increas-
ing the isotropy of the metric tensor. In the extremal
case, when we set ε = 1, we retrieve a standard cen-
troidal Voronoi tessellation of the mesh. Figure 3 shows
the final segmentations of the same mesh with the same
number of sites but with different values for parame-
ter ε. For most of our experiments we typically select
small values for ε (in the range [10−2, 10−6]) to exploit
the anisotropy property of the metric tensor but also to
avoid instabilities due to degenerate cells.
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Figure 5: Left: Gradient norm |∇F| over 1000 iterations for different
models and/or different number of cells k. Right: Relative computa-
tion times of different parts of the algorithm: (a) assigning vertices to
cells, (b) intersect mesh at region boundaries and (c) compute metric
tensors and cell centroids

Model k time (sec) / iter.
max. iter. |∇F| < 10−5

Venus (47k) 10 26.5 / 1000 5.3 / 202
Venus (47k) 100 40.0 / 1000 32.2 / 805
Venus (47k) 1000 94.3 / 1000 80.1 / 849
Bunny (253k) 100 254.7 / 1000 119.3 / 462
Hand (1688k) 100 2362.6 / 1000 623.2 / 264

Table 1: Computation times for different models and number of cells
(k). The last two columns show the computation time (in seconds)
along with the number of iterations in two versions: a) the number of
iterations is constant (1000) and b) the number of iteration depends on
|∇F|, i.e. the algorithm stops if |∇F| is smaller than a threshold (10−5).

4.2. Robustness against noise

We evaluated the stability of our algorithm in the
presence of noise in vertex positions. In our experi-
ments we randomly displace all vertices along the nor-
mal direction. The magnitude of displacement is drawn
from the normal distribution N(µ, σ2) with mean µ = 0
and standard deviationσ = sBdiag, where s is the param-
eter to control the displacement relative to the bounding
box diagonal Bdiag of the mesh. Figure 4 shows the seg-
mentation results for varying noise levels applied on the
same input mesh. Although the vertex distortion may
change the final segmentation we still obtain geometry-
aligned segments and we do not observe instabilities
due to noise.

We employed VSA with L2,1 metric on the same in-
put meshes with the same initial sites and equal number
of iterations. For smooth surfaces we obtained com-
parable segmentation results. However, on noisy input
meshes VSA tends to produce inaccurate segmentations
or may not converge (see figure 4, right). We note that
the recommended version of VSA make use of normal
information, which is likely unreliable in the presence
of noise.

Figure 6: Models for time measurements: Venus (47k faces,
10,100,1000 segments), Bunny (253k faces, 100 segments), Hand
(1688k faces, 100 segments). Results after 1000 iterations with
ε = 10−3.

4.3. Time statistics

We gathered computation time statistics for a set of
exemplary input models and parameters (see Figure 6).
In a first experiment we fixed the number of iterations
to 1000 and in a second experiment we added a stop-
ping condition: the optimization halts when the gradient
norm |∇F| is smaller than 10−5 (similar to [19]) which
turned out to be reasonable in practice. The plots of
the gradient norm are shown on the left side of Fig-
ure 5 for all experiments (log-scale). Table 1 summa-
rizes the overall computation times for different config-
urations. As expected, the time complexity is propor-
tional to the number of faces and the number of cells.
Figure 5 (right) shows the relative computation times of
the three optimization steps: assigning vertices to cells,
subdivide mesh at region boundaries and computing the
metric tensor for all cells (as described in 3). For the
same model the relative time for subdividing the mesh
along region boundaries increases with the number of
cells. For all experiments and measurements we use
a standard machine (Intel Xeon 2.66 GHz) without ex-
ploiting parallelization techniques.

6



4.4. Farthest-point initialization

Figure 7: Fandisk model with random sampling initialization of sites
(left) and farthest point initialization (right).

Instead of sampling points randomly on the surface
to initialize sites we can employ the farthest point sam-
pling heuristic to place sites on the surface. Starting
with one randomly sampled site we sequentially add a
new one when the iterative optimization for the current
set of sites reaches one of the stopping criteria (max-
imum number of iterations reached or algorithm con-
verged). We define the farthest point as the vertex which
deviates most from the tangential plane induced by the
covariance matrix of the associated cell. The motiva-
tion for this approach is to add more sites in regions
with high curvature whereas planar regions are suffi-
ciently represented by a single site. Especially for non-
smooth surfaces this strategy leads more satisfactory re-
sults. Figure 7 shows the difference between random
sampling and farthest point initialization of sites.

4.5. Polygonal mesh extraction

A typical application of mesh segmentations is to
simplify highly tesselated meshes to coarser surface
representations. With our segmentation algorithm we
are able to generate maximal planar segments which
minimize the error of a linear approximation of all seg-
ments. Converting a given segmentation into a polyg-
onal mesh is straightforward: First, we identify the
Voronoi vertices, i.e. the intersection points of three
cells with the surface. Second, we connect the Voronoi
vertices based on the inherent combinatoric information
of the segmentation. We obtain the adjacencies from
the trisection triangles, i.e. triangles with three unique
cell assignments at their vertices (see Section 3.3). We
also keep the ordering of the segments at those triangles
with respect to the global mesh orientation. With the lo-
cal informations of cell adjacencies and ordering we are
able to extract the combinatorics of the whole segmen-
tation. We finalize the mesh generation by assigning the
intersection points of the Voronoi vertices to the polyg-
onal mesh vertices. Figure 8 shows the results of this

Figure 8: Left: segmentation of models ”Bunny” (70k faces) and
”Hand” (100k faces) with ε = 10−6 and 100 segments each. Right:
extracted polygonal meshes

method for two examples. We note that this method is
only applicable for simply-connected segmentations. A
possible extension could be to refine the existing seg-
mentation to make it simply-connected. We could also
improve the resulting geometry by optimizing the ver-
tex positions or introducing additional vertices similar
to VSA ([7]).

5. Discussion

Our approach has interesting connections to other
techniques, in the graphics community and in machine
learning. We also briefly discuss generalizations and
limitations.

5.1. Connection to Variational Shape Approximation

Not surprisingly, the positional variant of VSA [7]
can be derived in our general setup: note that the covari-
ance matrix M provides a best fitting plane (the proxy
in the nomenclature of VSA) as the eigenvector corre-
sponding to the smallest eigenvalue. In VSA, distances
are measured only in this direction. In other words, if
we set the eigenvalues of M to be (1, 0, 0) in our ap-
proach, still using the eigenvectors D of the covariance
matrix, distances would be measured as in VSA.
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This choice of metric M would be the minimizer to
the function F under the constraint ‖M‖ = 1, where ‖ · ‖
is the operator norm, i.e. the largest singular value of
M. For symmetric M this constrains the first eigenvalue
to be one, and in order to minimize squared weighted
distances, the obvious choice for the remaining eigen-
values is zero. We note that this argument extends to
any Ky-Fan norm (sum of first k singular values) on M.

As is mentioned by Cohen-Steiner et al. [7], this
choice of metric is generally unstable in the optimiza-
tion. We have made similar observations when testing
the idea of constraining the operator norm.

5.2. Relation to Gaussian mixture models and expecta-
tion maximization

The algorithm described in Section 3 follows natu-
rally as a descent algorithm for minimizing Eq. 8 and
could also be interpreted as a generalization of Lloyd’s
algorithm [5], incorporating the update of the local met-
ric.

However, the resulting algorithm also exhibits a strik-
ing resemblance to fitting a Gaussian mixture model to
given data using expectation maximization (for an intro-
duction to these topics see the book by Bishop [8]). The
main differences are in a continuous vs. discrete setting,
the hard vs. soft assignment of the data to the sites, and
our treatment of degenerate data. The first two distinc-
tions seem to separate a large volume of literature on
centroidal Voronoi tessellations on the one hand and the
machine learning literature on EM on the other hand. It
appears to be fruitful to take a more global viewpoint
and unite the two approaches.

The problem of degeneracy also appears in the litera-
ture on Gaussian mixture models and expectation max-
imization. Here, degenerate data results in the function
to be maximized being unbounded. However, the soft
assignment of data to sites often reduces this problem in
practice. Apart form this advantage, we also observed in
preliminary tests that soft assignments lead to globally
better minimization results, without the need for farthest
point sampling.

On the level of justification for the approaches,
we provide an argument for using inverse covariance
weighting of the data: we derive this metric as the min-
imizer of a representation energy of the data (see Sec-
tion 3.1); whereas considering the covariance of the data
appears to be postulated as being natural in Gaussian
mixture models (or Mahalanobis distance, for that mat-
ter).

5.3. Generalizations
As presented in Section 2, there are many variants for

the computation of the local centroid and the distance
metric. It would be easy to incorporate local tensor in-
formation in our approach. In a sense, we already do
so by considering the centroid and covariance of each
triangle.

Using anything more complex than squared weighted
distances is more cumbersome: while the computation
of local centroids is known [3], it is not immediately
clear how to compute the metric M that minimizes dis-
tances under Lp norms.

The surface need not be given as a triangulation—as
long as there is some notion of neighborhood the al-
gorithm works as we described it. This could be a set
of points endowed with a k-nearest neighbor graph, or
depth images using the natural connectivity of the points
in the image plane in smooth regions.

5.4. Limitations
The standard centroidal Voronoi tessellation can be

effectively computed using Newton or quasi-Newton
techniques [20, 19]. It is not clear if the derivatives nec-
essary for such an approach could be derived for our
formulation.

A potential problem is the complicated shape of the
cells, which could lead to undesirable shapes of the seg-
ments on the surface. Concretely, the cell complex de-
fined by the cells might not have the same topology as
the underlying surface. This might also have implica-
tions if the dual of the cell complex should be extracted
to generate a triangulation. However, these issues have
already been discussed in detail [1].

We note that due to the re-definition of the conva-
riances and the metric tensors (Section 3.1) the func-
tional F may not decrease in every optimization step.
Although we did not observed any convergence issues
in our experiments we will address this fact in future
work.
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Appendix A. Covariance of a triangle mesh

To minimize the metric of a cell we need to compute
the covariance matrix of a triangulated surface. This can
be done by adding up the covariance matrices of individ-
ual triangles. A triangle T with vertices v0, v1, v2 ∈ R3

and area A has the covariance matrix

C(T ) =
A
12

(v0, v1, v2)

2 1 1
1 2 1
1 1 2

 (v0, v1, v2)T. (A.1)
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