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We introduce the notion of harmonic triangulations: a harmonic triangula-

tion simultaneously minimizes the Dirichlet energy of all piecewise linear

functions. By a famous result of Rippa, Delaunay triangulations are the

harmonic triangulations of planar point sets. We prove by explicit coun-

terexample that in 3D a harmonic triangulation does not exist in general.

However, we show that bistellar flips are harmonic: if they decrease Dirichlet

energy for one set of function values, they do so for all. This observation

gives rise to the notion of locally harmonic triangulations. We demonstrate

that locally harmonic triangulations can be efficiently computed, and effi-

ciently reduce sliver tetrahedra. The notion of harmonic triangulation also

gives rise to a scalar measure of the quality of a triangulation, which can

be used to prioritize flips and optimize the position of vertices. Tetrahedral

meshes generated by optimizing this function generally show better quality

than Delaunay-based optimization techniques.
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1 INTRODUCTION
The Delaunay triangulation of a point set is a fundamental tool

in geometry processing and mesh generation. The reason for this

is that it can be computed efficiently in any dimension and the

geometric properties of the elements are well defined.

In the plane, Delaunay triangulations satisfy several optimality

properties, for example, the minimal interior angle is maximized. A

remarkable property is the connection to Dirichlet energy: for the

given points in the plane attach a function value to each point. A

triangulation of the points gives rise to a piecewise linear function

(we present a representation of this function in Section 3). We may

ask: which triangulation minimizes the Dirichlet energy of the PL

function? The surprising result by Rippa [1990] is that the Delaunay

triangulation minimizes Dirichlet energy independent of the attached
function values.

This property, just as many other optimality properties of planar

Delaunay triangulations, fails to generalize to three or more dimen-

sions [Musin 1997]. The starting point of this work was the question:

’Are the good geometric properties of Delaunay triangulations really
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due to the classic definitions (see Section 2), or could small Dirichlet

energy be the reason?’ Our central idea is, consequently, to charac-

terize and define harmonic triangulations as minimizers of Dirichlet

energy – see Definition 3.

Our main results are that (1) minimization of Dirichlet energy

independent of function values induces a partial order on the tri-

angulations, which is given by the partial order of the positive

semi-definite quadratic forms of the Dirichlet energy; and (2) bistel-

lar flips are consistent with this order, in the sense that the effect of

a flip on the Dirichlet energy is independent of the function values.

This means that flipping can be used to generate local minima of

Dirichlet energy in the flip-graph of triangulations. As minimizers

of Dirichlet energy we suggest to call such triangulations harmonic.
The details and additional geometric insights are discussed in Sec-

tion 4

An important (and to our knowledge open) question is if a glob-

ally harmonic triangulation exists. In two dimensions this is the

case, since the Delaunay triangulations minimizes Dirichlet energy

independent of function values. In Section 6.1 we give an explicit

counterexample for three dimensions. This means flipping towards

locally harmonic triangulations is the best we can do, as the dif-

ferent locally harmonic triangulations are usually not comparable,

meaning the comparison of their Dirichlet energies depends on the

choice of function values.

There are many functions mapping from the quadratic form of

Dirichlet energy to a scalar that are consistent with the partial order.

Such functions can be used to optimize not just the combinatorics

but also the vertex positions – similar in spirit to optimal Delaunay

triangulations [Chen and Xu 2004]. We derive the gradients of a nat-

ural functions (see Section 5) and use it to optimize vertex positions

in a descent scheme (Section 7.3).

Based on our observations we develop basic algorithms (see Sec-

tion 7) for the generation of locally harmonic triangulations by

flipping and potentially moving the vertices. These algorithms are

easy to implement given frameworks for robust geometric compu-

tations and data structures that support bistellar flips on simplicial

complexes. In a series of experiments we demonstrate the favor-

able properties of these algorithms: harmonic flipping to a locally

harmonic triangulation is orders of magnitude faster than sliver

exudation [Cheng et al. 2000]. The geometric properties of locally

harmonic triangulations are similar or better than techniques based

on Delaunay triangulations.

We conclude that harmonic triangulations are a useful new tool

for triangulating and optimizing point sets in three dimensions.

There are multiple applications for this tool and important follow-

up explorations, some of which are discussed in Section 9.

2 BACKGROUND AND RELATED WORK
Given a point set {xi } in Rd , the Delaunay triangulation can be

characterized in several seemingly different but intimately related

ways. All of the following characterizations are independent of
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the dimension d . For simplicity, we assume the input points are in

general position meaning there is only one Delaunay triangulation

of the point set.

• A d-simplex is part of the Delaunay triangulation if its cir-

cumsphere contains only the incident vertices.

• Consider the Voronoi diagram of the points, i.e., attach to each

point the region of closest points. The Delaunay triangulation

is the dual of the Voronoi diagram.

• Embed the points into Rd+1 and lift them to the paraboloid,

i.e., the additional coordinate is ∥xi ∥2. The lower convex

hull, i.e. the faces of the convex hull that can be seen from

(0, . . . , 0,−∞), is the Delaunay triangulation.

The literature on Delaunay triangulations is vast – for an in depth

discussion of the characterizations above together with proofs of

their equivalence we suggest the ’book in progress’ by Gallier and

Quaintance [2017, Ch. 12]; for a general account on triangulations

see De Loera et al. [2010].

Delaunay triangulations are an important tool in mesh genera-

tion. In many applications, the quality of the mesh is important. The

notion of quality depends on the particular application, however,

in general one wants to avoid simplices that are nearly degener-

ate. Measures of degeneration are based on angles, sizes of ele-

ments (lengths, areas, volumes), radii of insphere and circumsphere.

Shewchuk [2002a] provides a detailed, application-dependent dis-

cussion of quality measures for dimensions two and three. Bern

et al. [Bern et al. 1995] argue that avoiding small dihedral angles

is a good measure in arbitrary dimension. Indeed, many works in

mesh generation report the smallest dihedral angle. On the other

hand, from the perspective of finite element methods is is impor-

tant that large dihedral angles are uniformly bounded away from

π as this guarantees convergence. This is true for planar triangula-

tions [Babuška and Aziz 1976] as well as triangulations in 3D [Křížek

1992].

In the plane, the Delaunay triangulation generates high quality

elements. Apart from other optimality properties it maximizes the

smallest interior angle [Sibson 1978]. Interestingly, in more than

two dimensions Delaunay triangulations commonly contain badly

shaped elements, so-called slivers. One way of removing the slivers

is by generalizing to weighted Delaunay [de Goes et al. 2014] or

regular triangulations [De Loera et al. 2010], which are the duals

of power diagrams [Aurenhammer 1987]. Using this extra degree

of freedom of the weights, Cheng et al. [2000] give an algorithm

that adjusts the weights so that slivers are removed. The algorithm

comes with certain guarantees. We find that in practice the approach

we present here performs better (see Section 8.3).

For better quality triangulations based on the Delaunay triangu-

lation it is necessary to adjust the vertex positions. The third of the

three notions of Delaunay triangulation can be used to define it as

a minimizer of a scalar functional, namely the volume under the tri-

angulation of the points lifted to the paraboloid. Taking the convex

hull of the points clearly minimizes the volume (see also [Musin

1997]). This view allows adjusting the point positions to improve

the triangulation in a way that is consistent with the Delaunay

triangulation. The idea is to fix the vertices at the boundary (the

convex hull of the points) and then minimize the volume under the

triangulation of the points lifted to the paraboloid, subject to the

combinatorics of the triangulation and the positions of the interior

vertices. This approach has been coined optimal Delaunay triangu-
lation (ODT) [Chen and Xu 2004]. It has been used to generate high

quality triangulations in 3D [Alliez et al. 2005; Chen et al. 2014] and

recently been extended to curved meshes [Feng et al. 2018].

A number of algorithms are based on Delaunay triangulations

and add additional points to improve the quality of the tetrahe-

dra [Shewchuk 2002b]. Delaunay refinement has been successfully

combined with ODT for high-quality mesh generation [Tournois

et al. 2009]. If the vertex positions are not important and the mesh

only needs to approximate the boundary of a given shape there are

also many other ways to generate triangulations, commonly based

on starting from a triangulation of the regular lattice and then adjust-

ing the elements close to the boundary [Labelle and Shewchuk 2007;

Molino et al. 2003]. These methods generate high quality meshes.

We see our work more in relation to Delaunay triangulations.

Harmonic triangulations connect properties of the triangulation

with the discrete Laplace-Beltrami operator. One can construct the

discrete operator matrix for any given triangulation from the Dirich-

let energy [Pinkall and Polthier 1993] (similar to the derivation we

provide in Section 3). This construction ensures that the opera-

tor will satisfy several pertinent properties of the smooth opera-

tor [Wardetzky et al. 2007]. However, the operator generally lacks a

maximum principle. In two dimensions, the Delaunay triangulation

leads to a maximum principle. This has to do with the Delaunay

property guaranteeing that all off-diagonal entries (corresponding

to interior edges) of the operator matrix have the same sign. Simi-

lar guarantees cannot be deduced from the properties of Delaunay

triangulations in higher dimensions (we are unaware of a reference

for this statement but it is easy to construct examples). Harmonic

triangulations, as we will see, are related to the magnitude of the

coefficients of the operator matrix and, therefore, might also be

related to the maximum principle.

3 PRELIMINARIES
We begin by deriving a description of a piecewise linear function

over a triangulation in Rd . Then we use this description to compute

the Dirichlet energy of the function as a bilinear form. This will

lead to a characterization of triangulations based on the symmetric

matrices representing the bilinear form.

3.1 Triangulations and piecewise linear functions

Consider n points xi ∈ Rd . We use the notation XS to denote the

matrix resulting from considering the points in the index set S, i.e.

XS =
(
xs0 , xs1 , . . .

)
∈ Rd×|S | , S = (s0, s1, . . .) ∈ Z

|S |
n (1)

and we write X for the matrix consisting of all points. The convex
hull of the points indexed in S is

Rd ⊃ C (XS ) =
{
x = XSa, a ∈ R

|S |

≥0

}
. (2)

A k-simplex is represented by k + 1 points ∆k = (i0, . . . , ik ) ∈ Z
k+1
n

and identifies the region C (X∆k ). We commonly use t = ∆d to

denote a d-simplex (i.e. triangle for d = 2, tetrahedron for d = 3).
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We are interested in embedded triangulations of the convex hull of
Xwith all points in X as vertices, meaning that each point x ∈ C (X)
can be associated uniquely with the relative interior of exactly one

simplex ∆k :

x = X∆k a, a ∈ Rk>0, ∥a∥1 = 1. (3)

In an embedded triangulation all d-simplices are non-degenerate.

We assume that each d-simplex t is represented so that its signed
volume

vt =
1

d!
det(x1 − x0, x2 − x0, . . .) =

1

d!
det (XtM) (4)

is strictly positive. Here Xt ∈ R
d×(d+1)

represents the points span-

ning the simplex (i.e., the vertex positions) andM is a matrix that

transforms values associated to the simplex so that they are rep-

resented relative to the values of the first vertex. Let 1 ∈ Rd be a

vector of d ones and Id ∈ Rd the d × d identity matrix, then

M =
(
−1Td
Id

)
∈ R(d+1)×d . (5)

Note that XtM is a square matrix and based on our assumptions on

non-degeneracy it is invertible.

Now consider function values f ∈ Rn attached to the points. An

embedded triangulation gives rise to a piecewise linear function

f : C (X) 7→ R dependent on f . The function results from linearly

interpolating the function values in each simplex. Note that it suf-

fices to consider d-simplices, because the linear interpolation in a

d-simplex for a point that is associated to a k-simplex with k < d
(e.g., an edge) is identical for all d-simplices incident on that k-
simplex. We perform this interpolation by translating the d-simplex

so that vertex i0 coincides with the origin, which can be done by

multiplication withM. Then we solve the linear system

XtM b = x − xi0 , (6)

providing the coefficients b for the linear interpolation of the func-

tion values (relative to the function value at vertex i0):

f (x) = fi0 + ( fi1 − fi0 , . . . , fid − fi0 )b (7)

Putting everything together we get

f (x) = fi0 + f
T
t M (XtM)−1 (x − xi0 ), C (Xt ) ∋ x, (8)

Note that the association C (Xt ) ∋ x is not unique whenever x is

contained in a sub-simplex, yet the function f is identical for all

possible assignments.

3.2 Dirichlet energy
The Dirichlet energy of a function д : Ω 7→ R is

E (д) =
1

2

∫
Ω
∥∇д(x)∥2dx. (9)

The gradient of the PL function f is constant in the relative interior

of the d-simplices and undefined on the sub-simplices. The measure

of the sub-simplices is zero, so we can integrate over the relative

interiors only. For a simplex, we find the gradient

∇x f = fTt M (XtM)−1 (10)

and since it is constant inside each d-simplex the Dirichlet energy

can be expressed as the sum

E ( f ) =
1

2

∑
t ∈T

vt



f

T
t M (XtM)−1




2

(11)

=
1

2

∑
t ∈T

fTt vtM (XtM)−1 (XtM)−TMT ft (12)

=
1

2

∑
t ∈T

fTt Lt ft =
1

2

fTLT f . (13)

The matrix LT ∈ Rn×n is a discrete Laplace-Beltrami operator. Since
it is derived from a piecewise-linear discretization of Dirichlet en-

ergy it is identical to the familiar cotan-operator in two dimen-

sions [Pinkall and Polthier 1993]. It is assembled from the per-

triangle Laplace-Beltrami operators

Lt = vt M (XtM)−1 (XtM)−TMT
(14)

as submatrices (cf. [Alexa and Wardetzky 2011]).

We believe it is instructive to derive the geometry behind the

expression for Lt . This will rediscover the more common expres-

sions of Dirichlet energy or the discrete Laplace operator in terms

of cotangent weights or dot products of area vectors resp. gradi-

ents [Duffin 1959; Dziuk 1988; Meyer et al. 2003; Pinkall and Polthier

1993; Xu and Zikatanov 1999]. The expressions are also useful in

the subsequent discussion as well as for impementation.

Consider a simplex with indices (0, 1, . . . ,d ) and translate it so

that x0 = 0. This means XtM = (x1, . . . , xd ). Denote the i-th row

of (XtM)−1 as yTi . By construction of the inverse, yi is orthogonal
to all xj for j , i . This means yi is a normal of the facet opposite
of vertex i . Let ni be the unit outward pointing facet normal. We

know yTi xi = 1 and can compute the height hi of vertex i over the

face opposite to it as hi = −nTi xi . This implies yi = − 1

hi
ni and we

can write

(XtM)−T = −(h−1
1
n1, . . . ,h−1d nd ). (15)

The area ai of the facet opposite of vertex i is connected to the

height via the volume: aihi/d = vt . This means we can express

the inverse also in terms of the facet areas (and the volume of the

simplex) as

(XtM)−T = −
1

dvt
(a1n1, . . . ,adnd ). (16)

Multiplying this representation from the right withMT
yields

(XtM)−TMT = −
1

dvt

*.
,
−

d∑
j=1

ajnj ,a1n1, . . . ,adnd .
+/
-

(17)

We know that the area facet normals sum up to zero (for exam-

ple [Alexandrov 2005, 2.2.3]), i.e.

∑d
j=0 ajnj = 0, so the sum in the

first entry of the vector is simply a0n0 and we get

(XtM)−TMT = −
1

dvt
(a0n0,a1n1, . . . ,adnd ) . (18)

With this we can express the elements of Lt as

(Lt )i j =
1

d2vt
aiajnTi nj , (19)

which is one form of expressing the common cotan-weights. Noting
that entries of LT result from summing up over d-simplices, we
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find that the i-th diagonal entry of LT is governed by the volumes

of the d-simplices in the star and the d − 1 simplices in the link. Let

nt\i be the normal of the facet opposite vertex i in t , and likewise

at\i its area and ht\i the height of vertex i over this facet. Then we

have

(LT )ii =
1

d2

∑
t ∋i

a2t\i

|vt |
=

1

d2

∑
t ∋i

at\i

ht\i
=

1

d2

∑
t ∋i

|vt |

h2t\i
. (20)

As we will use the trace of LT to deduce the order of triangulations

we note that

tr(LT ) =
1

d2

∑
i

∑
t ∋i

a2t\i

|vt |
=

1

d2

∑
t

∑
i ∈t a

2

t\i

|vt |
. (21)

The trace is related to the harmonic index [Bobenko and Springborn

2007; Chen et al. 2010; Musin 1997] as a characterization of Delaunay

triangulations for d = 2. The quantity

ηt =

∑
i ∈t a

2

t\i

|vt |
(22)

will be useful for computations that aim at optimizing the trace.

For d = 3 a similar (but not identical) term has been suggested by

Shewchuk [2002a]
1
as a smooth, size and shape dependent measure

for the condition of the stiffness matrix generated by using the tetra-

hedra as a piecewise linear discretization. We see that for dimension

d , η and thus tr (LT ) scales with exponent d − 2.

4 HARMONIC ORDER
We start by defining what we mean be harmonic triangulation.

Definition 1 (Harmonic triangulation). An embedded trian-
gulation T of a set of points X ∈ Rd×n is harmonic if it spans the
convex hull of X and satisfies fTLT f ≤ fTLT ′f for any embedded
triangulation T ′ of the points X spanning their convex hull and any
vector of function values f ∈ Rn .

By Rippa’s theorem [Rippa 1990] the harmonic triangulation

for d = 2 exists for any point configuration and coincides with the

Delaunay triangulation. For dimensiond > 2 every set ofd+2 points
has two triangulations and at least one of them is harmonic [Musin

1997]. For more than d + 2 points the question has been open. As

we will show in Section 6.1, harmonic triangulations may not exist.

This suggests considering a weaker version, where we only ask that

a single flip cannot decrease Dirichlet energy (we will make precise

what we mean by a flip later).

Definition 2 (Locally harmonic triangulation). A triangu-
lation T of set of points X ∈ Rd×n is locally harmonic if it satisfies
the conditions in Definition 1 for all triangulations T ′ that can be
reached from T with one bistellar flip.

We now explain how these definitions lead to partial orders and

how they are connected to the matrices LT .

1
this measure only appears in the extended unpublished preprint but not the shortened

conference version of the paper

3/2 flip

2/3 flip

Fig. 1. The two triangulations of d + 2 points for d = 3. The interior faces
are illustrated in blue.

4.1 Partial order
The matrices Lt are symmetric PSD by construction (see Eq. 14). It

follows that LT is a symmetric PSDmatrix. We write this as LT ≥ 0

(this could be thought of fTLT f ≥ 0 for any vector f ∈ Rn ).
We define a partial order on the set of triangulations consisting

of all points and covering the convex hull.

Definition 3 (Harmonic order).

T0 > T1 ⇐⇒ LT0 − LT1 ≥ 0 ∧ LT0 , LT1 (23)

In words, two triangulations are ordered, if their Laplace operator

matrices are different and the difference is semi-definite. If two

triangulations are ordered, their Dirichlet energies are similarly

ordered, independent of the function values f :

T0 > T1 =⇒ fTLT0 f ≥ fTLT1 f . (24)

If there exists a triangulation T ∗ so that T ∗ < T for all admissible

T of X it is harmonic.

4.2 Bistellar flips are ordered
A set of d + 2 points in Rd in convex position has exactly two

triangulations (of the convex hull of the points). In the plane (d = 2),

these are the two triangulations of a (convex) quadrilateral based on

choosing one of the two diagonals. In 3-space, the convex hull of 5

points in convex positions always has two verticeswith degree 3, and

3 vertices with degree 4 (this is the only configuration admissible

by Euler-Poincaré). The five points can be either split into to 2

tetrahedra by the triangle formed from the degree 4 vertices, or into

three tetrahedra around an additional diagonal between the two

degree 3 vertices (see Figure 1).

Replacing the triangulation of a subset of d + 2 points in a trian-

gulation of n ≥ d + 2 points by the other possible configuration is

called a (bistellar) flip. The flip-graph is a graph over the embedded

triangulations as nodes and the flips as edges. Two embedded trian-

gulations of a point set are connected by a sequence of flips if they

are in the same connected component of the flip graph. Whether

the flip-graph is connected depends on the dimension. For d = 2

it is known to be connected and, consequently, any triangulation

can be reached from any other triangulation through a sequence

of flips [Lawson 1972]. For d ≥ 5 the flip graph is known to be

disconnected [De Loera et al. 2010]; for d = 3, 4 the general question

is still open. We use flips nonetheless as the main tool to explore

harmonic triangulations.
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Definition 4 (Harmonic flip). A flip from a triangulation T to
a triangulation T ′ is harmonic if T > T ′.

An important insight is that except for flips that have no effect

on the PL surface represented by the two triangulations, the two tri-

angulations are always ordered and that this order can be computed

efficiently. This is what we show in the following.

Observation 1. If a flip from a triangulation T to a triangulation
T ′ changes the Laplace matrix, i.e., LT , LT ′ , then we have either
T < T ′ or T > T ′.

This can be shown by generalizing an argument by Chen et

al. [2010]. Denote the difference matrix

∆L = LT − LT ′ , (25)

which is symmetric by construction. Consider the quadratic form

fT∆Lf . It is affected only by the d + 2 elements of f that correspond
to the flip, because all other entries of ∆L are zero. Moreover, it

vanishes if the d + 2 values define a linear function (i.e., the points

{x, fi } lie in a common plane) as both triangulations T and T ′ are

identical on a plane. Of the d + 2 values of f that correspond to

the d + 2 vertices, any d + 1 define a linear function in Rd . The
single remaining value can be chosen in the plane of d + 1 points so
that fT∆Lf vanishes. This means the kernel of ∆L has dimension (at

least) n − 1 and the rank of ∆L is (at most) one. A rank-one matrix

is necessarily semi-definite, implying the statement above.

Moreover, any rank-one matrix can be written ∆L = λmmT
.

From this we see that all diagonal elements of ∆L have the same

sign. Consequently, harmonic flips from T to T ′ satisfy (LT ′ )ii ≤
(LT )ii for all i ∈ [0,n − 1] and there exists at least one j ∈ [0,n − 1]
so that (LT ′ )ii < (LT )ii . This characterization can be conveniently

summarized as follows:

Observation 2 (Trace condition for flips).

T ′ < T ⇐⇒ tr (LT ′ ) < tr (LT ) . (26)

Note that while the implication ’=⇒’ follows from the definition,

the direction ’⇐=’ is based on the argument above and only true if

T ′ is the result of a flip performed on T . Since the trace function

is scalar, it introduces an ordering on the graph of flips for edges

(T ,T ′) that satisfy LT , LT ′ . As pointed out above, the case

LT = LT ′ ⇐⇒ ∆L = 0 implies that the d + 2 vertices are co-planar.
Clearly, the triangulation of a planar patch has no effect on the

geometric properties, so this restriction is quite natural.

Since the graph of flips is thus directed (for non-degenerate config-

urations), it contains sources and sinks. A sink is a locally harmonic

triangulation. A sink can be found by starting from an arbitrary

triangulation and then following the directed edges, i.e., performing

a sequence of harmonic flips.

4.3 Geometry of triangulations on d + 2 points
Delaunay triangulations can be completely characterized by consid-

ering only d + 2 points and asking for the geometric configurations

that have no preferred triangulation. Concretely, consider d + 1

points Xt forming a d-simplex. For the d + 2-nd point we may ask:

what are the positions x so that both triangulations of the d + 2

points are Delaunay? It turns out that this set is the circumsphere

of t . Moreover, if x lies outside the circumsphere, the triangulation

contains t ; if it lies inside it does not. In other words, every circum-

sphere of a d-simplex in the Delaunay triangulation has no vertices

in its relative interior. This statement characterizes Delaunay trian-

gulations in every dimension and is commonly known as the empty
sphere property.

We similarly investigate geometric configurations of d + 2 points
for harmonic triangulations. We start with a d-simplex Xt and ask

for positions x of an additional points so that the difference ∆L
of the two triangulations vanishes. It is convenient to focus on

a single diagonal element of ∆L, namely the diagonal element of

the additional point at x. The two possible triangulations can be

described as follows: the triangulation containing t is constructed
by connecting x to all facets of t that are visible to x. To make this

precise consider the facet normals ni of t and denote the height of

x over the facet opposite to vertex i as

hi (x) = nTi x − di . (27)

A facet is visible, if hi (x) > 0. The triangulation not containing t is
composed of all d-simplices resulting from connecting the vertex

at x to the remaining facets in t , i.e., those for which hi (x) < 0.

Recall the representation of diagonal entries of the matrix LT from

Eq. 20. The fact that the two triangulations are distinguished by the

signs of the heights means the difference for the diagonal elements

corresponding to x is

δ (X) =
∑
i

ai
hi (x)

(28)

and the set of points for which both triangulations are harmonic

is characterized by δ (x) = 0. It is important to note that the singu-

larities of this function are the facet planes and that the function

changes its sign across the facet planes. Multiplying with all denom-

inators leads to:

0 =
∑
i
ai

∏
j,i

hj (x) =: cd (x) (29)

and now the singularities are solutions. The polynomial cd has order

d . Since we know by Rippa’s theorem [Rippa 1990] that Delaunay

and harmonic triangulation coincide in the plane, the quadratic

polynomial for d = 2 is a curious way to represent the circumcircle

of a triangle. In higher dimension, however, the polynomial degree

is larger than 2. We leave the discussion of the case d = 3 for

Section 6.2; for now we note that the algebraic surface represented

by c (x) = 0 is not a sphere for d > 2.

5 VERTEX POSITIONS
Recent techniques for generating high quality triangulations in

3D are based on the idea of optimizing a function over the space

of all triangulations as well as the positions of (some) vertices. In

particular, optimal Delaunay triangulations (ODT) minimize the

volume under the PL function resulting from lifting the vertices to

a paraboloid [Chen and Xu 2004]. Minimizing the volume among

triangulations generates the convex hull, which is known to be

the Delaunay triangulation for the vertices lifted to the parabo-

loid [Musin 1997]. Optimizing the positions of (interior) vertices

generates isotropic triangulations [Alliez et al. 2005]. Several tech-

niques can be used to further optimize the distribution of vertices
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and the quality of the resulting triangulation [Chen et al. 2014; Feng

et al. 2018; Tournois et al. 2009].

The definition of harmonic triangulations is based on being a

minimizer for the Dirichlet energy independent on the function

values. Yet, minimizing the Dirichlet energy w.r.t. the vertex position

does depend on the function values – this situation is an instance

of mesh smoothing based on a posteriori error estimates [Bank and

Smith 1997]. Any fixed choice of function values could be used to

define an energy, and this energy would be consistent with the

definition of harmonic triangulations. However, fixing a vector of

function values is not the only way: every function д mapping from

the space of symmetric PSD matrices to a scalar is admissible if it

satisfies T0 < T1 ⇒ д(LT0 ) < д(LT1 ).
Our representation of the matrix LT as a sum of the matrices

Lt provides an easy way to generate the gradient of any matrix

function w.r.t. the vertex positions X for functions д that are linear
in LT . In these cases we can compute the gradient as the sum of

the gradients of Lt , i.e.

∂д(LT )
∂X

=
∑
t ∈T

∂д(Lt )
∂Xt

. (30)

We focus on the trace as the scalar function to be minimized. Its

gradient can be computed as

∂ tr(Lt )
∂Xt

=
1

d!
(XtM)−TMT (tr(Lt )I − 2Lt ) . (31)

Note that (XtM)−TMT
is the vector of area-weighted facet normals.

This means the entire expression could be evaluated based on the

areas and normal vectors of the facets and the volumes of the d-
simplices. We leave the derivation of specific rules for updating the

vertices on the boundary for future work.

Since it is not clear what setting the gradient in Eq. 31 to zero

means geometrically, we look at a related situation. Consider the

case of optimizing a single vertex i w.r.t. the function eTi LT ei , where
ei is the i-th canonical unit vector, i.e. the i-th row or column of the

identity matrix In . According to the Eq 20 this means we have the

following minimization problem:

argminxi

∑
t ∋i

at
ht (xi )

(32)

Note that only the heights depend on the vertex position xi while
the areas of the facets in the link of vertex i are not affected by

varying xi .
This optimization problem has an elegant solution if the degree

of vertex i is minimal, i.e. its link polytope is a simplex. In this case

we can use the heights ht as variables, which only have to satisfy

the condition ∑
t ∋i

htat = dvt . (33)

We can now minimize using the Lagrangian dependent on the

heights

L({ht }, λ) =
∑
t ∋i

at
ht
+ λ

∑
t ∋i

htat . (34)

Setting the partial derivative w.r.t. ht to zero

∂L

ht
= −

at

h2t
+ λat = 0 =⇒

at,0
h−2t = λ (35)

3/
2 �ip 3/2 �ip

Fig. 2. Triangulations of a distorted octahedron. The triangulation with 5
tetrahedra at the top is Delaunay (the green lines indicate the Delaunay ball).
There are two harmonic flips leading to triangulations with a single diagonal
and 4 tetrahedra. The configuration has one additional triangulation with
one diagonal that is not shown. The triangulations based on one diagonal
are mutually incomparable, showing that there generally are no (globally)
harmonic triangulations in 3D.

reveals that all heights need to be identical. In other words, the opti-

mal placement for a vertex with d + 1 neighbors is at the incenter of
the link polytope. This result immediately extends to link polytopes

that are circumscribed to a common sphere.

This result is interesting in light of the optimal placement of a

single vertex in ODT, where the optimal location of a single vertex is

at the circumcenter if the vertices in the link are co-spherical [Alliez

et al. 2005; Chen 2004; Chen et al. 2014]. A potential problem with

the circumcenter is that it might be outside the link polytope. In

contrast, the incenter is always inside a tangential polytope.

6 OBSERVATIONS IN 3D
While the combinatoric of harmonic triangulations is understood in

2D, it is open if they exist in 3 (or more) dimensions [Musin 1997].

We give an example for 6 vertices that settles this issue by showing

that there is generally no triangulation that minimizes Dirichlet

energy for all function values f : The example also illustrates how

harmonic flips remove slivers in Delaunay triangulations. Since

there is no globally harmonic triangulation in 3D we focus on lo-

cally harmonic triangulations, which can be found by flipping. We

investigate how harmonic flips relate to Delaunay triangulations

and find that harmonic flipping strictly reduces the number of tetra-

hedra. This suggests computing locally harmonic triangulations by

starting from the Delaunay triangulation and then performing only

3/2-flips.

6.1 Examples on 6 vertices
Consider 6 points x0, . . . , x5 in strictly convex position. The convex

hull consists of 8 faces, each vertex is incident on 4 of them. This

means each vertex is connected to all but one other vertex by an edge.

Assume the vertices are numbered so that edges (0, 1), (2, 3), (4, 5)
are not part of the convex hull.

In general position the points have 6 different embedded triangu-

lations:
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• 3 triangulations arise from inserting one of the three diago-

nals. Consider the case of inserting the diagonal (0, 1). Then
there are 4 tetrahedra, all containing the edge (0, 1) and a

pair of the remaining 4 vertices. Two of the three possible tri-

angulations based on one diagonal are illustrated in Figure 2

(lower part).

• 3 triangulations arise from inserting two of the three diago-

nals. Then the two inserted diagonals form one tetrahedron,

and each of the remaining two vertices connects to two faces

of this tetrahedron. Thus, these triangulations have a total of

5 tetrahedra. Any of these triangulations may be degenerate

if the two diagonals intersect. Figure 2 (top) shows one of the

three cases, while the other two in this specific example are

degenerate.

Now consider the vertex position of a slightly perturbed octahedron:

X = *.
,

−1 − δ 1 + δ −ϵ −ϵ ϵ ϵ
0 0 −1 1 0 0

0 0 0 0 −1 1

+/
-
, δ ≥ ϵ > 0. (36)

The situation is visualized for δ = .5, ϵ = .15 in Figure 2. The dis-

tance of the vertices to the origin is 1+δ2 + 2δ > 1+ϵ2. This means

the sphere around (2, 3, 4, 5) is empty, so the points form a Delaunay

tetrahedron. Consequently, the Delaunay triangulation TD is given

by inserting the diagonals (2, 3), (4, 5) and consists of 5 tetrahedra.

There are 3 more embedded triangulations in this configuration,

based on the three 4-tetrehedra configurations resulting from insert-

ing one diagonal, which we denote T0,T2,T4. The remaining two

configurations resulting from two diagonals are degenerate because

the diagonals intersect. The Delaunay configuration can be flipped

into the configurations based on only one of the two diagonals.

In the following we assume that δ and ϵ are small compared to the

lengths of the edges. We first explain why the flip from the Delaunay

triangulation is harmonic, i.e., T2,T4 < TD , implying that all three

triangulations T0,T2,T4 are locally harmonic. Then we show that

no two of them are comparable, meaning the vertex set X has no

harmonic triangulation.

For the flip, recall that it suffices to consider the traces of LT . The
i-th diagonal element can be computed from the ratio of squared

face areas and volumes of incident tetrahedra (cf. Eq. 20). Only

the Delaunay triangulation contains the sliver t = (2, 3, 4, 5) with
volumeO (ϵ ). All other tetrahedra in the triangulations have volume

O (1) and the face areas are likewise in O (1). This means tr(LTD ) =
O (ϵ−1) where as tr(LTi ) = O (1), so the flip is harmonic.

Recall that the for two triangulations to be comparable, all diago-

nal elements of LT need to be ordered similarly. We only need to

consider the triangulations T0,T2,T4 as candidates for a (globally)

harmonic triangulation because TD > T2,T4. Each of these triangu-

lations consists of four tetrahedra incident on the main diagonal.

The faces on the convex hull all have area

√
3/2 +O (δ ) (here and

in the following we make use of O (ϵ ) ∈ O (δ )). The interior faces
are spanned by the diagonal and another vertex, so they have area

1 +O (δ ). The volumes of the tetrahedra are then 1/3 +O (δ ).
To compute the diagonal entry i we need to go over all incident

tetrahedra. For the vertices incident on the diagonal there are 4

tetrahedra, and the face not incident on the vertex is on the convex

hull; the other vertices are incident on 2 tetrahedra and the face not

Fig. 3. The Cayley nodal cubic is the set of points on which a fifth point
leads to identical Laplace operators for the two possible triangulations. It
is analogous to the circumsphere in Delaunay triangulations. The color
codings shows the different regions induced by the half space of the face
planes. In other words, all points with the same color are in the positive
half space of the same faces. The left image shows the surface for a regular
tetrahedron, the right image is based on an irregular one.

incident on the vertex is interior. This means the diagonal entries

are (
LTj

)
ii
=




4
3/4+O (δ )
1/3+O (δ ) = 9 +O (δ ) i = j, i = j + 1

2
1+O (δ )
1/3+O (δ ) = 6 +O (δ ) else

(37)

For a wide range of values ϵ,δ we have 6 + O (δ ) < 9 + O (δ ) (for
example, the concrete values chosen for Figure 2). In this case, the

triangulations are not ordered. To make an example, the choice

f = ej will lead to eTj LT2j ej > eTj LT2k ej ,k , j. This means we can

maximize Dirichlet energy for any choice of triangulation among

T0,T2,T4.

Lastly, note that the two degenerate triangulations missing in this

example are not changing this result. Slightly perturbing the vertices

would lead to two more triangulations with sliver tetrahedra, which

are not harmonic either. Since such configurations of 6 vertices

can be part of any point set with more than 6 points we make the

following conclusion:

Observation 3. For d = 3 and any n ≥ 6 there exist point sets
X ∈ Rd×n without a harmonic triangulation.

While the example on 6 point in R3 has no direct analogy in

higher dimension, we believe similar situations exist. We make this

concrete as follows:

Conjecture 1. For every dimension d > 3 there exists a configu-
ration of n ≥ d + 3 points X ∈ Rd×n for which none of the embedded
triangulations of the convex hull is harmonic.

6.2 Delaunay vs. harmonic flip
A flip in 3D is governed by 5 points. We take the view of Section 4.3

and fix 4 points forming a tetrahedron t . Then we explore the de-

pendence of the triangulation on the position x of the fifth vertex.

We expect that there is a set of points in space (in fact, a surface)

for which both triangulations are harmonic.

As mentioned, for Delaunay triangulations this surface is the

circumsphere through the four points of t . For the harmonic tri-

angulation, the surface is given by Eq. 29. For d = 3 it is a cubic
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surface. The gradient of the cubic polynomial is

∇xc3 =
3∑
i=0

ai

3∑
j=0, j,i

nTj

3∏
k=0,k,j,i

hj (x). (38)

If the position x is identical to one of the vertices xi , then three of the
heights hj (xi ) are identical zero, while only hi (xi ) < 0 (we defined

the normals to point outwards). The products

∏
k,i, j hk (x) consist

of two terms, of which at least one is zero. This means the gradient

vanishes in the vertices xi so the surface has singular points there.

Moreover, the Hessian contains only linear terms and is non-zero in

the vertices. This means the vertices are ordinary double points of the
cubic surface. Cayley has characterized cubic surfaces [Cayley 1869]

and found that the 4 double points uniquely determine the cubic

surface (in projective space). Consequently, the surface for which

both triangulations are harmonic is a specific Euclidean instance

of Cayley’s nodal cubic, with the nodal points being the vertices.

Figure 3 shows renderings of the surface for a regular tetrahedron

as well as one with different edge lengths.

In order to understand the relation of the Delaunay and the har-

monic triangulation it is useful to distinguish among the possible

locations of x. We classify the position based on how many faces

of the tetrahedron are visible from x, i.e. the number of positive

heights hi (x).
(0) The point is inside the tetrahedron t and there is only one

possible triangulation consisting of 4 tetrahedra.

(1) The point is in the positive half space of exactly one face.

Connecting the point to this face preserves t and results in

2 tetrahedra. Removing t requires connecting x to the three

hidden faces and results in 3 tetrahedra.

(2) The point is in the positive half space of two faces. Connect-

ing the point to the two faces (i.e, preserving the existing

tetrahedron t ) generates a triangulation with 3 tetrahedra.

The triangulation without t results from connecting x to the

hidden faces and consists of 2 tetrahedra.

(3) The point is in the positive half space of three faces. The

vertex incident on the three faces is inside the tetrahedron

formed by x and the other three vertices. There is only one

possible triangulation in this case.

(4) The point cannot be in the positive half spaces of all 4 faces

if the tetrahedron has positive volume.

The color coding in Figure 3 illustrates the classification. We now

compare the Delaunay and harmonic triangulation. The triangula-

tions are identical for cases 0 and 3, so we only need to consider 1

and 2.

We start with the case that x is in the positive half space of only

one face. It appears that in this area the Cayley cubic is contained

in the circumsphere. This is demonstrate in a cut-away view in

Figure 4(left) – note how the Cayley cubic tightly encloses the faces

of the tetrahedron, while the circumsphere is far away. This configu-

ration implies that if x is outside the circumsphere t is preserved for
both the Delaunay and harmonic triangulation and the triangulation

consists of 2 tetrahedra. Between the circumsphere and the Cayley

cubic the Delaunay triangulation consists of 3 tetrahedra, while the

harmonic triangulation has only 2. Inside the Cayley cubic both

Delaunay and harmonic triangulation consist of 3 tetrahedra.

Fig. 4. Cut views of the circumsphere (gray) and the Cayley cubic (blue) for
an anisotropic tetrahedron. The circumsphere encloses the Cayley cubic in
the positive half space of only one face plane (left), while the Cayley cubic
is outside of the circumsphere in the positive half space of two face planes
(right).

In the case that x is in the positive half space of two faces it ap-

pears the circumsphere is inside the Cayley cubic. In Figure 4(right)

this is clearly visible on the lower edge. This means if x lies outside

the Cayley cubic, t is preserved and both triangulations consist of 3

tetrahedra. Between the Cayley cubic and the circumsphere, the har-

monic triangulation removes t and consists of 2 tetrahedra, while the
Delaunay triangulation still consists of 3. Inside the circumsphere

both triangulations consist of 2 tetrahedra.

We summarize this observation as follows:

Conjecture 2. Given 5 points in R3 so that their Delaunay and
Harmonic triangulation are unique. Then the two triangulations are
either identical or the Harmonic triangulations consists of 2 tetrahedra
while the Delaunay triangulation consists of 3.

We have checked the conjecture by generating random configu-

rations of 5 points and were unable to find a counterexample.

The important practical implication is that harmonic flipping

from the Delaunay triangulation decreases the number of tetrahe-

dra unless the Delaunay triangulation coincides with the harmonic

triangulation. It also simplifies the implementation of such an algo-

rithm, because only edges need to be checked and possibly flipped.

In the following description of algorithms we exploit this property.

7 ALGORITHMS
We suggest algorithms for generating locally harmonic triangula-

tions by flipping as well as optimizing the vertex positions.

7.1 The basic flipping algorithm
The basic algorithm performs elementary flips. A flip is harmonic if

it decreases the trace of LT . A flip either removes two tetrahedra

adjacent to a face and replaces it by three tetrahedra; or it removes

three tetrahedra incident on an edge and replaces it by two tetrahe-

dra. In both cases we evaluate the change of tr(LT ) by considering

the values ηt for the 5 tetrahedra t being removed or created by

the flip (since no other tetrahedra are affected). Throughout the

procedure we compute ηt for each tetrahedron only once and store
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it for later use. This is more efficient than using Eq. 29 that defines

the Cayley surface.

When evaluating a possible flip, we first check that the new 2, resp.

3 tetrahedra have positive volume. If this is the case, the flip would

lead to another embedded triangulation. Also, this check preserves

the convex boundary of the triangulation. If the flip is geometrically

valid, we compute the squared areas of the new faces and then

ηt for the new tetrahedra. For flipping an edge, let t0, t1, t2 be the
current tetrahedra, and tl , tr the new ones. The flip is harmonic if

ηtl +ηtr < ηt0+ηt1+ηt2 . Likewise, let tl , tr be the tetrahedra incident
on an existing face and t0, t1, t2 be the tetrahedra resulting from

flipping the face. The flip is harmonic if ηt0 + ηt1 + ηt2 < ηtl + ηtr .
Initially we iterate over all edges and faces. If a harmonic flip is

found it is inserted into a queue. Also, we mark all current tetrahe-

dra as valid. Then we take elements from the queue. If all tetrahedra

incident on the face or edge to be flipped are valid, the flip is per-

formed (otherwise it is simply discarded). Performing a flip entails

invalidating the tetrahedra incident on the edge or face, removing

them from the triangulation. The new tetrahedra are set to be valid

and inserted in the triangulation. Their values η have already been

computed for checking if the flip is harmonic. All edges and faces

on the boundary in the convex hull of the 5 points are checked for

possible new flips, similar to the initial stage. If new harmonic flips

are found they are inserted into the queue. The process terminates

when the queue is empty.

It remains to decide on a way to prioritize the flips. As we will

show in Section 8 the order in which flips are performed does affect

the outcome of the procedure, however, the effect on the properties

of the resulting triangulations is small. Prioritizing flips that lead

to a large decrease in trace seems to lead to generally good results.

Also, the necessary values are readily available, because we have to

compute the sums ηt0+ηt1+ηt2 and ηtl +ηtr anyways, and the value
for prioritization is simply the difference of these two sums. Note

also, that this value only depends on the tetrahedra being affected

by a flip. This means the value of a flip never changes – a flip can

only become invalid if one of the tetrahedra is being invalidated by

another flip. This means the implementation only requires a simple

priority queue.

7.2 Flipping from the Delaunay triangulation
It seems plausible to start with the Delaunay triangulation. This

has the advantage that robust and fast algorithms for generating

the starting triangulation are readily available; and that the above

algorithm can be simplified because only edges (of degree three)

need to be evaluated for possible flips.

A flip induces new possible flips. It is useful and therefore notewor-

thy that not all of the edges in the two newly generated tetrahedra

need to be checked. Let xl , xr be incident on the edge that is flipped

so that x0, x1, x2 are forming the new triangle, which is incident on

the two new tetrahedra. Since the 5 points are in convex position, all

edges are incident on at least two tetrahedra outside of the convex

hull (the external dihedral angle is larger than π so it cannot be

an internal dihedral angle of a single tetrahedron). Since the edges

(1, 2), (2, 3), (3, 1) are incident on the two new tetrahedra on the

inside of the convex hull they have at least degree 4 and cannot

be flippable. Conversely, the remaining 6 edges connected to xl , xr
used to have degree at least 4 for the same reason, but after the

flip they are incident to only one tetrahedron on the inside of the

convex hull so they may become flippable and need to be checked.

Perhaps more interestingly, the faces of the two new tetrahedra

also never need to be flipped: The inner face is the result of the flip

and was created by a harmonic flip. The reverse operation cannot be

harmonic. The remaining faces are part of the Delaunay triangula-

tion. This means there exists an empty Delaunay ball around them,

suggesting also the Cayley cubic contains no other points (recall

that face flips are more restrictive for harmonic flips than Delaunay,

Section 6.2), so the face flips would not be harmonic. It seems this

argument can be extended to any faces encountered during the

flipping algorithm and, indeed, we observe in practice that in the

whole sequence no harmonic face flips become available.

7.3 Vertex position update
For updating the vertex position we consider the trace function

tr(LT (X)). This means we try to minimize the trace in all steps of

the algorithm. We start by computing the Delaunay triangulation

and flip to minimize the trace. Then the vertex positions are updated

by gradient descent using line search. After this step, all edges and

faces are considered for possible flips to decrease the trace. The two

steps of gradient descent with line search and flipping are iterated

until no flips are necessary and the gradient descent step is smaller

than some threshold.

For line search we use Brent’s method [Press et al. 1992, Ch. 10.3].

It is important, however, to choose the interval so that the triangu-

lation is embedded, negative volumes could appear to reduce the

trace function. We first approximate the smallest value λ so that the

triangulation with coordinates X − λ∇X is embedded by an inter-

val search. Then we use the interval [0, λ] as the starting point for
Brent’s method.

For good results it is crucial to also move the vertices on the

boundary. Since we have no explicit boundary rule we resort to

projecting the vertices back to the surface. In the special case of

spherical boundaries it suffices to normalize the vertex positions. In

the case of boundaries given as triangle meshes, the closest point

on the mesh is taken as the projection. This process has potential

for improvement, which we leave for future work.

7.4 Implementation
We have implemented the above algorithms using CGAL’s 3D tri-

angulation framework [Jamin et al. 2018] and Eigen [Guennebaud

et al. 2010]. An implementation of the basic flipping algorithm is

available online.

8 EXPERIMENTS
In the following experiments we evaluate the geometric properties

of harmonic triangulations experimentally. We are interested in

computation time relative to the number of input vertices n and,

when applicable, the number of tetrahedra |T |. For the properties

of the resulting triangulation we look at the number of tetrahedra

after optimization and the shape of the tetrahedra.
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Fig. 5. Time required to generate the Delaunay triangulation (red) and to
flip from the Delaunay triangulation to the locally harmonic triangulation
(blue). Note that the flipping procedure requires a roughly constant fraction
of the time required to build the Delaunay triangulation. The insets illustrate
the resulting triangulations.

There is no single measure for the quality of the triangulation

that applies to all possible use cases. We focus on dihedral angles

ϕt i j , defined in our notation by

cosϕt i j = −nTt\int\j . (39)

A commonly reported quantity is the smallest dihedral angle:

ϕ = min

t ∈T ,i, j ∈t
ϕt i j . (40)

While the Delaunay flip in two dimensions (and thus the harmonic

flip) selects the configuration that maximizes the smallest interior

angle, this is not true for Delaunay flips in three dimensions and

dihedral angles. One may wonder if the harmonic flip is a generaliza-

tion of the two-dimensional situation that does extend this behavior

to higher dimension. A test based on sampling 5 uniformly dis-

tributed points reveals that the harmonic triangulation maximizes

ϕ in more than 95% of the cases, but not always. Interestingly, the

Delaunay triangulation appears to be uncorrelated with the minimal

dihedral angle in three dimensions.

Because of the mentioned importance for the convergence of

finite element methods we also report the largest dihedral angle

ϕ = max

t ∈T ,i, j ∈t
ϕt i j . (41)

For some point sets (or shapes) the smallest or largest dihedral angle

is affected only by the boundary, and the different triangulation

approaches may have no effect on the elements on the boundary. As

an indication on the distribution of small or large dihedral angles

we also report the largest angle ϕ5% among the 5% smallest angles as

well as the smallest angle ϕ5% among the 5% largest angles, i.e. the

5% and 95% rank in the distribution of dihedral angles. In Tables 2

and 3 large angles are given as the difference to 180
◦
so that large

numbers are always better.

Table 1. Basic results for Delaunay triangulations and harmonic flipping
on point sets. Starting from the Delaunay triangulation, harmonic flipping
requires less time than the generation of the Delaunay triangulation. There
is a notable reduction in the number of tetrahedra.

Delaunay Harmonic

Input n time |T | time |T |

Gaussian 10K 0.06s 67K 0.02s 60K

Bunny 35K 0.21s 238K 0.10s 204K

Uniform 50K 0.28s 335L 0.13s 298K

Gaussian 100K 0.61s 675K 0.27s 601K

Julius 209K 1.33s 1.44M 0.64s 1.27M

Camel 223K 0.85s 858K 0.41s 727K

Dragon 438K 2.92s 3.13M 1.71s 2.63M

Uniform 500K 3.07s 3.37M 1.53s 2.99M

Blade 883K 5.50s 6.07M 3.45s 5.19M

Gaussian 1.0M 6.50s 6.77M 3.34s 6.02M

Hand 1.7M 11.2s 11.9M 7.48s 10.1M

Uniform 5.0M 31.9s 33.8M 18.6s 30.0M

Gaussian 10M 76.9s 67.7M 39.5s 60.2M

Lucy 14M 107s 96.9M 67.6s 81.8M

8.1 Statistics for Delaunay and harmonic flipping
We start from various point sets X and compute the Delaunay tri-

angulation. Some point sets are the vertex sets of common triangle

meshes, i.e. they are distributed on a surface embedded in R3. We

also use points sampled randomly in space, both based on the uni-

form distribution in [0, 1]3 as well as based on a Gaussian distribu-

tion with unit variance.

We then take the resulting Delaunay triangulation and perform

harmonic flips. The flips are prioritized based on the decrease in

trace, i.e. taken from a priority queue with tr(∆L) as value. Table 1
provides the detailed results of this experiment. We believe the

absolute computation times are not relevant, but it is important

that harmonic flipping requires less time than computing the initial

Delaunay triangulation. Figure 5 shows that the time required for

flipping is a constant fraction across a wide range of input sizes. We

also see that harmonic flipping reduces the number of tetrahedra

significantly.

8.2 Dependence on order of flips
Recall that generally more than one primitive can be flipped, and

each flip would reduce the Dirichlet energy regardless of function

values f . The decrease in energy depends on the function values f .
Performing one flip may invalidate another flip and in general the

order of flips leads to different local minima in the graph of flips.

Here we want to analyze how the different local minima vary and,

if there is variation, how prioritizing flips based on tr(∆L) compares.

For this we start with three small tetrahedra meshes. The reason for

taken small meshes is that the number of triangulations over a set

of points is very large, and we wish to sample a representative part

of this space.

Starting from the Delaunay triangulation, we randomly choose

elements from the available flips until no harmonic flips are available.
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Table 2. Comparison between sliver exudation and harmonic flipping. Starting from a Delaunay triangulation, sliver exudation and harmonic flipping are
performed. The results are compared w.r.t. the number of remaining tetrahedra |T | as well as small and large dihedral angles. Large dihedral angles are
reported as the difference to 180

◦.

Input mesh Sliver exudation Harmonic flipping

Type |T | ϕ ϕ5% ϕ5% ϕ time |T | ϕ ϕ5% ϕ5% ϕ time |T | ϕ ϕ5% ϕ5% ϕ

Sphere 1.02K 0.2 35.1 70.6 0.4 0.09s 1.00K 7.9 37.6 71.7 31.7 0.00s 1.00K 5.1 37.8 72.1 23.0

Sphere 2.29K 0.7 33.2 61.3 1.1 0.19s 2.20K 17.1 38.2 67.4 25.0 0.00s 2.15K 19.9 41.2 71.3 30.7
Horse 2.61K 0.6 15.7 36.4 1.6 0.23s 2.46K 3.6 20.5 44.6 6.8 0.00s 2.30K 3.6 23.8 52.1 6.7

Sphere 18.5K 0.3 32.1 61.2 0.6 1.18s 17.8K 11.2 38.1 67.8 19.1 0.01s 17.4K 8.8 41.3 72.0 13.7

Homer 99.3K 0.1 18.8 53.6 0.2 10.0s 95.4K 0.9 25.1 59.7 1.7 0.07s 92.2K 0.9 29.3 64.0 1.6

Sphere 149K 0.6 31.7 60.3 0.9 11.3s 143K 9.5 38.2 67.7 15.3 0.09s 140K 5.0 41.4 72.1 7.5

Vase 295K 0.0 17.5 45.8 0.0 26.8s 282K 1.3 22.0 52.7 2.3 0.28s 269K 1.2 25.7 58.5 2.0

Sphere 1.12M 0.0 17.8 42.1 0.1 100s 1.08M 1.5 21.6 48.2 2.7 1.28s 1.03M 0.7 24.6 53.6 1.2

Sphere 18.6M 0.0 31.7 60.3 0.0 1733s 17.9M 3.5 38.5 68.0 5.7 23.4s 17.5M 3.0 41.7 72.5 4.8

2.4 2.6 2.8 3 3.2 3.4
ηt

1,100 1,120 1,140 1,160
|T |

7 7.5 8 8.5 9 9.5
ηt

5,800 6,000 6,200 6,400
|T |

22 24 26 28

ηt

3,800 4,000 4,200 4,400
|T |

Fig. 6. Variation among different locally harmonic triangulations. Starting
fron the Delaunay triangulation (red circles) choose harmonic flips randomly
until no more harmonic flips are available. The upper graphs show ηt ,
the lower graphs show the histogram of the number of tetrahedra in the
resulting mesh. The blue triangles mark the result of prioritizing by tr(∆L).

We repeat this process one million times. For a comparison of the

resulting tetrahedral meshes we measure |T | and, as a measure of

the quality of the tetrahedra, ηt . We include the initial Delaunay

mesh and the result from prioritizing by tr(∆L). Figure 6 shows the
result of this experiment. We find that the properties of local minima

are rather similar relative to the initial Delaunay triangulation. For

example, startingwith 1158Delaunay tetrahedra inside a unit sphere,

the one million random local harmonic minima cover the range

[1092, 1101], which are just 10 different values. The quality measure

shows several modes for some of the shapes. Nonetheless, there is a

clear difference between the quality of the local harmonic minimum

and the Delaunay triangulation.
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Fig. 7. Time required by sliver exudation and harmonic flipping relative to
the number of tetrahedra |T |. The black line indicates linear growth at 105

tetrahedra per second. Harmonic flipping is two orders of magnitude faster
than sliver exudation.

Prioritizing by tr(∆L) leads to very good shape quality. How-

ever, we did find random samples with smaller ηt meaning that

greedily minimizing the trace provides no guarantee to find the

triangulations with smallest trace.

8.3 Comparison to sliver exudation
It has become clear through the previous experiment that the quality

of elements is improved by harmonic flipping. We now ask how

it performs in comparison to techniques that are targeted at elim-

inating slivers. We chose sliver exudation [Cheng et al. 2000] as it

appears to be the most successful technique for removing slivers

without altering the position of the vertices.

As a starting point we take Delaunay meshes generated by CGAL

and then apply either sliver exudation or harmonic flipping. Table 2

shows the result of this comparison for a number of different inputs.

The most apparent difference is in running time: harmonic flipping

is about two orders of magnitude faster. Figure 7 illustrates that

this effect is stable across a wide range of mesh sizes. Another clear

trend is that harmonic flipping leads to fewer elements.

The comparison of element shape is more subtle. The extreme

dihedral angles show mixed results. While the locally harmonic

triangulation has similar or slightly better extreme dihedral angles

in a few cases, sliver exudation notably improves the angle bound
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0 50 100 150 ϕ

0 50 100 150 ϕ

0 50 100 150 ϕ

Fig. 8. Comparison of the triangulations resulting from sliver exudation
and harmonic flipping started from a triangulation generated by Delaunay
refinement (as implemented in CGAL). Left: Tetrahedra with dihedral angles
smaller than 10

◦, resp. 20◦ for the sphere) after sliver exudation. Middle:
the same illustration for harmonic flipping. Right: histograms over dihedral
angles. The red curve shows the distribution of dihedral angles for the
initial Delaunay triangulation, green for sliver exudation, blue for harmonic
flipping.

in particular for the spheres. Looking at the distribution of dihedral

angles, harmonic flipping generates consistently better results. This

is evident from the angles for the 5% smallest and largest angles.

Figure 8 shows examples of the distribution for three of the inputs,

including the sphere with largest difference in extremal dihedral

angles. In all cases, the histogram of dihedral angles starts and ends

flatter for harmonic triangulations, meaning there are fewer ele-

ments with extreme dihedral angles. This is also visualized in the left

side of Figure 8: locally harmonic triangulations have significantly

fewer elements with dihedral angles smaller than 10
◦
, resp. or 20

◦

for the sphere.

8.4 Optimizing vertex positions
The gradient descent scheme described in Section 7.3 can be used

to move the vertices for further improvement of the quality of the

tetrahedra. We call this process harmonic optimization. It is similar

in spirit to ODT, which also minimizes a scalar functional across

the combinatorics and the vector of vertex positions.
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1

1.5

2

2.5
·104

tr(LT )
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ϕThe iterative optimization

procedure decreases the quan-

tity tr(LT ) in each step. It is

interesting to see how the min-

imal dihedral angle develops

over the iterations. The graph

in the inset is typical for most

examples. Note how the angle

oscillates while the trace func-

tion monotonically decreases.
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Fig. 9. Comparison of runtime performance of ODT (red) and harmonic
optimization (blue). The graphs show the smallest and largest dihedral
angles relative to the computation time. Both plots are based on tetrahedral
meshes with spherical boundary on 500 (left) and 25K (right) input vertices.

This behavior makes it difficult to define a stopping criterion based

on tr(LT ) when the goal is to optimize extreme dihedral angles.

It seems natural to compare the result of this procedure to ODT.

For this we use the implementation of ODT that is part of the

Mesh3D package in CGAL. A problem for comparing the runtimes of

the iterative procedures is that a large part of the computation time

is spent on the boundary projection step. A comparison of dihedral

angles versus computation time is best performed on spheres, for

which the boundary treatment is trivial. Figure 9 shows the result

for two spheres, one with 500 and the other one with 25K input

vertices. The oscillating behavior of extramal dihedral angles can

be seen for both methods. Harmonic optimization provides much

better results much faster. This is quite natural, as ODT is based

inherently on a functional that is insensitive to slivers.

It has been noted that the quality of the tetrahedral mesh can be

drastically improved by adding sliver perturbation, a process that

directly tries to improve element shape by perturbing the vertices

incident on slivers. Lastly, we have already seen that harmonic flip-

ping has an effect similar to sliver exudation. For a complete picture,

we include sliver perturbation and, additionally, sliver exudation as

post-processing steps to ODT.

As mentioned, it is difficult to define a stopping criterion for

harmonic optimization. For a fair comparison, first the CGAL im-

plementation of the optimization has been run without time limits.

Then harmonic optimization was stopped after roughly the same

time. This has led to computation times less than a second for the

smaller examples, up to a minute for the larger ones.

Table 3 shows the results of this experiment. Overall, the results

are similar to the situation without vertex movement. While the

extremal dihedral angles show results in favor of the explicit shape

optimization, harmonic optimization exhibits better distribution of

dihedral angles. Figure 10 shows the results for 4 cases with inferior

extremal dihedral angles. In all cases, the distribution of angles is

better at the extreme ends of the spectrum. The illustrations based

on tetrahedra with angles smaller than 15
◦
resp. 25

◦
show that

harmonic optimization generates significantly less elements with

small angles.

9 DISCUSSION
The concepts of harmonic flipping and harmonic optimization di-

rectly lead to triangulations that improve Delaunay-based methods.
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Table 3. Comparison between the optimization of tetrahedral meshes based on optimal Delaunay triangulations, vertex perturbation and sliver exudation as
available in CGAL and harmonic optimization. The numbers provided are the same as in Table 2.

Input mesh ODT + perturbation + exudation Harmonic optimization

Type |T | ϕ ϕ5% ϕ5% ϕ |T | ϕ ϕ5% ϕ5% ϕ |T | ϕ ϕ5% ϕ5% ϕ

Sphere (uniform) 2.29K 0.6 33.2 61.3 1.1 2.15K 12.9 42.9 74.9 22.2 2.15K 30.7 44.9 75.5 47.7
Sphere (graded) 9.04K 0.0 25.3 60.1 0.1 8.86K 12.0 36.1 71.6 26.9 8.56K 6.8 34.5 66.8 5.4

Sphere (uniform) 18.5K 0.3 32.1 61.2 0.6 17.4K 15.8 43.8 75.8 29.9 17.5K 23.6 44.5 75.9 38.8
Horse 40.8K 0.2 16.2 48.0 0.3 38.7K 5.4 23.9 64.8 8.8 37.3K 3.9 38.2 60.4 5.9

Bunny 54.5K 0.2 38.7 59.8 0.4 51.2K 12.2 43.5 76.3 20.8 51.2K 11.0 43.8 75.4 15.5

Armadillo 135K 0.1 16.3 47.1 0.2 127K 6.0 23.6 64.5 8.7 123K 4.8 29.7 58.5 6.8

Sphere (uniform) 149K 0.6 31.7 60.3 0.9 140K 13.6 44.9 77.1 24.6 140K 21.5 44.7 76.2 36.6

0 50 100 150
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0 50 100 150

ϕ

0 50 100 150

ϕ

0 50 100 150

ϕ
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ϕ
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Fig. 10. Comparison of triangulations resulting from ODT plus sliver perturbation and exudation with harmonic optimization. Left: Tetrahedra with dihedral
angle smaller than 15

◦ after ODT optimization, sliver perturbation, and sliver exudation (as implemented in CGAL) compared to harmonic optimization.
Middle: the same comparison for 25◦. Right: histograms of dihedral angles. Red is the initial triangulation, generated by Delaunay refinement, green curves
are based on ODT plus sliver perturbation, and additional exudation; blue shows the result of harmonic optimization.

This is notable, as the generation of high quality tetrahedral meshes

is usually also a major engineering effort. The implementation of

harmonic flipping and harmonic optimization appear to be consider-

ably simpler than alternatives. Our straightforward implementation

already handles meshes with several million input vertices and

hundreds of millions output elements.

We believe harmonic flipping has a large range of immediate

applications. Every process that uses Delaunay triangulations as a

way of generating an initial triangulation would likely benefit from

harmonic flipping, because it reduces the number of elements to

be handled at small additional cost. In addition, harmonic flipping

removes exactly those elements that potentially cause numerical

issues. For example, TetWild [Hu et al. 2018] starts with a Delaunay

triangulation of the point set and then processes the elements to

include the input boundary elements. It falls back to more complex

number types in case the elements are near-degenerate. This should

happen much less if the tetrahedral mesh is based on harmonic

triangulations.

The main drawback of harmonic triangulations is clearly that

there is no global optimum in 3 (and probably higher) dimensions.

We believe this is an inherent property of triangulations, which

can be seen from the example in Section 6.1. There simply is no

(globally) preferable choice for removing the sliver tetrahedra. Note

that sliver exudation likewise provides no unique way to exude the

slivers.
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Wemade a number of claims regarding the properties of harmonic

triangulations, in particular relative to the Delaunay triangulation.

We believe formally proving these properties is important future

work. Of particular relevance is the connection of locally harmonic

and regular triangulations. It is currently unclear if locally harmonic

triangulations are regular.

We also see interesting avenues for alternative constructions of

harmonic triangulations. Note that the common way to generate

Delaunay triangulations in three and higher dimensions is incremen-

tal [Edelsbrunner and Shah 1992; Joe 1989]. One way to interpret

this is that each vertex is inserted into an existing tetrahedron by

connecting it to the vertices. Then a sequence of flips restores the

Delaunay property. It would be interesting to replace the Delaunay

flips by harmonic flips. From a practical perspective it would be im-

portant to understand the dependence of the resulting triangulation

on the insertion order and also how the incremental construction

affects the quality.

Harmonic flipping appears to be easy to implement also in higher

dimension. This could immediately improve triangulations in higher

dimension.
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