
Efficient Embeddings in Exact Arithmetic
UGO FINNENDAHL, TU Berlin, Germany
DIMITRIOS BOGIOKAS, TU Berlin, Germany
PABLO ROBLES CERVANTES, TU Berlin, Germany
MARC ALEXA, TU Berlin, Germany

1 min

1 hour

10 msec

10K 100K 1M

Time

Vertices

Planar realization

E3 A (ra
tio

nal)
Tutte

 (d
ouble)

Tu
tt

e
(r

at
io

na
l)

Flipped in plane, identified as flipped in double

Not flipped in plane, yet identified as flipped in double

Flipped in plane, yet not identified as flipped in double

Boundary triangle
1 sec

10K 100K 1M

1 min

1 day

1 hour

Time

1 sec

Fixing Tutte

E3 A (ra
tio

nal)

Pro
gre

ss
ive E

mbed
ding

50 li
ne

s o
f c

od
e

(fa
iled)

(dnf)

Fig. 1. The mesh above has only 3785 vertices and well-shaped triangles. Realizing it in the plane using Tutte’s embedding algorithm in double precision
creates 121 flipped triangles (blue and yellow). These flipped triangles cannot be reliably detected in double precision: yellow triangles are flipped but have
positive area in computation based on doubles; red triangles have negative area in double, but exact computation reveals that they are correctly oriented. We
create several subdivisions of the mesh to analyze how different strategies for fixing the problems scale. Solving the linear system for the Tutte embedding in
rationals fails for all but very small meshes. Our efficient embedding in exact arithmetic (E3A) based on Schnyder realizers [Schnyder 1989] is faster than Tutte
embeddings in double precision while guaranteed. We also develop an algorithm for fixing planar triangulations. It is three orders of magnitude faster than
Progressive Embedding [Shen et al. 2019] and a recent robust untangling approach [Garanzha et al. 2021].

We provide a set of tools for generating planar embeddings of triangulated
topological spheres. The algorithms make use of Schnyder labelings and
realizers. A new representation of the realizer based on dual trees leads
to a simple linear time algorithm mapping from weights per triangle to
barycentric coordinates and, more importantly, also in the reverse direction.
The algorithms can be implemented so that all coefficients involved are 1 or
−1. This enables integer computation, making all computations exact. Being
a Schnyder realizer, mapping from positive triangle weights guarantees
that the barycentric coordinates form an embedding. The reverse direction
enables an algorithm for fixing flipped triangles in planar realizations, by
mapping from coordinates to weights and adjusting the weights (without
forcing them to be positive). In a range of experiments, we demonstrate that
all algorithms are orders of magnitude faster than existing robust approaches.

CCS Concepts: • Computing methodologies → Computer graphics;
Mesh models;Mesh geometry models.

Authors’ addresses: Ugo Finnendahl, TU Berlin, Berlin, BER, Germany, finnendahl@tu-
berlin.de; Dimitrios Bogiokas, TU Berlin, Berlin, BER, Germany, d.bogiokas@tu-berlin.
de; Pablo Robles Cervantes, TU Berlin, Berlin, BER, Germany, pablo.roblescervantes@
campus.tu-berlin.de; Marc Alexa, TU Berlin, Berlin, BER, Germany, marc.alexa@tu-
berlin.de.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART1 $15.00
https://doi.org/10.1145/3592445

Additional Key Words and Phrases: parametrization, Schnyder labeling,
integer coordinates

ACM Reference Format:
Ugo Finnendahl, Dimitrios Bogiokas, Pablo Robles Cervantes, and Marc
Alexa. 2023. Efficient Embeddings in Exact Arithmetic. ACM Trans. Graph.
42, 4, Article 1 (August 2023), 17 pages. https://doi.org/10.1145/3592445

1 INTRODUCTION
Generating a planar parameterization of a triangulation in 3D is
an essential step in computer graphics and geometry processing
pipelines. In many scenarios, guaranteeing that the triangulation is
embedded is crucial. It implies local injectivity, i.e., all triangles are
non-degenerate and consistently oriented across edges, as well as
global bijectivity, i.e., each point in the domain is uniquely assigned
to exactly one vertex, one edge, or one triangle.
The importance of these properties is reflected by a large num-

ber of works aiming at (locally) injective mappings. They are most
commonly based on minimizing a function in the position of the
vertices. The energies, in most cases, are designed so that their local
or global minimizers yield the desired injectivity. An early example
for this type of approach is this: fix the boundary in the planar
realization in strictly convex position and consider interior edges
as springs, meaning we want to minimize the sum of their squared
lengths. This is a quadratic function in the vertex positions of the
realization. Tutte, famously, showed that the minimizer defined as
the solution of a linear system exists, is unique, and provides an em-
bedding [Tutte 1963]. This general approach has been extended and

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3592445
https://doi.org/10.1145/3592445

1:2 • Ugo Finnendahl, Dimitrios Bogiokas, Pablo Robles Cervantes, and Marc Alexa

modified in many ways, see the surveys by Floater and Hormann
[2005] and Sheffer et al. [2007]. More recent work has attempted
to better model the similarity between the original triangulation
in 3D and the planar realization, while still being efficient [Lipman
2012; Sawhney and Crane 2017]. For the resulting more complicated
non-linear functions to be optimized, smarter techniques for the
minimization have been introduced, with a particular focus on injec-
tivty [Du et al. 2020, 2022; Garanzha et al. 2021], and some providing
guarantees [Rabinovich et al. 2017; Su et al. 2020].
The theoretical foundations for injectivity or bijectivity in the

above stream of papers are mostly based on real numbers, yet practi-
cal implementations of the algorithms use floating point representa-
tions. This seriously limits claims about robustness and guarantees,
as already the computation of the signed area of a triangle in float-
ing point may not reflect the true orientation of the triangle. This
is a well known and an important topic in computational geome-
try [Hoffmann 1989], because many elementary algorithms easily
break when implemented in floating point arithmetic. There are dif-
ferent strategies to handle this problem [Schirra 2000]. Using exact
arithmetic [Granlund et al. 2020] would allow implementing algo-
rithms as developed for real numbers [Yap 1997], but is often found
to be too slow in practice. A widespread solution is the dynamic
increase in floating point resolution when necessary to guarantee
an exact result [Shewchuk 1997].
Reading the literature on injective parameterizations, one may

think that the problems of finite precision are somehow irrelevant
in practice for mesh parameterization. However, as nicely demon-
strated by Shen et al. [2019] this is not true: taking all topological
spheres in the Thingi10K data [Zhou and Jacobson 2016], removing
a single triangle, and generating a parameterization using Tutte
embeddings by solving a linear system in IEEE754 double format,
80 out of 2718 planar triangulations are not embedded. We repeated
and extended this experiment. The smallest example (without de-
generate triangles) we found has only 193 vertices. To understand
the range of problems even for small and inconspicuous inputs, con-
sider the mesh in Figure 1: it has 3785 vertices and all 7566 triangles
are well-shaped (i.e., have no unnecessarily extreme aspect ratios).
We remove the first triangle in the face list and realize the mesh as
explained above. The number of flipped triangles computed in exact
arithmetic is 121. More severely, when checking for flipped triangles
in double precision, we find that 17 flipped triangles are reported
as correctly oriented; another 14 correctly oriented triangles are
reported to be flipped. This highlights that not only the numerical
optimization may fail to provide a result that is consistent with the-
oretical results, also checking the validity in floating point may be
misleading. Perhaps even more important in practice, downstream
algorithms relying on the correct orientation of triangles may be
more ‘sensitive’ to near degeneracies than the rather simple com-
putation of signed area. We demonstrate this problem by running
the minimization of symmetric Dirichlet energy [Smith and Schae-
fer 2015] on Tutte embeddings computed in double precision and
see the optimization failing on realizations that are embedded (Sec-
tion 7). We also show that solving the linear system in exact rational
representation is infeasible even for small meshes (Section 7).

We suggest a new approach to guaranteeing an embedding based
on Schnyder labelings [Schnyder 1989]. They have been introduced

to generate drawings of planar graphs on small integer grids with
a boundary consisting of a single triangle, i.e. three vertices. Put
simply, barycentric coordinates for the vertices are generated by
‘counting’ triangles divided by different trees, the so-called Schnyder
woods [Schnyder 1990] (we explain the trees in Section 2). The proof
that this generates an embedding only relies on the fact that each
triangle contributes positively, suggesting that each triangle could be
equipped with an arbitrary positive weight [Dhandapani 2010]. The
properties of the algorithms immediately suggest that the mapping
from weights to coordinates is linear and can be computed in linear
time. This also means, while every realization of a triangulation
with positive weights is embedded, not all embedded triangulations
are represented by positive weights.

In this work, we provide a new view on Schnyder realizers based
on a dual tree (see Section 4). This view has the following advan-
tages:
• We feel our approach is simpler than earlier algorithms, bet-
ter exhibiting the properties of the mapping and easier to
implement efficiently. In particular, it directly shows that the
coefficients in the linear map are only in {−1, 0, 1}.
• It directly reveals that also the ‘reverse’ mapping from Eu-
clidean coordinates to weights can be computed in linear
time (to our knowledge, this direction was so far computed
by solving a linear system [Barrera-Cruz et al. 2014]). Even
better yet, each weight only depends on a constant number
of Euclidean coordinates.

These mappings immediately lead to a trivial algorithm for fixing
a realization: map from Euclidean coordinates to weights, increase
the weights, and check the realization in Euclidean space. This
can be done in integer coordinates, and the algorithms terminates
with an embedding because any set of positive weights leads to
an embedding. However, we show that the properties of Schnyder
realizers seen through the dual tree admit a faster alternative with
less distortion, since they provide guarantees even for negative
weights.

The significant advantage of the algorithms we provide is that
the number of bits we use in the representation of the geometry
affects only the quality of the parameterization, but not whether or
not any triangles are flipped. We offer several practical comparisons
in Section 7. For testing the initial embedding compared to Tutte
we optimize symmetric Dirichlet energy and find that embeddings
generatedwith Schnyder realizers are faster and, on average, provide
a better starting point. Comparing algorithms for fixing planar
realizations, we find that our algorithm is orders of magnitude
faster.
A fundamental drawback of the method is the assumption that

the input has disk-topology and only three vertices on the boundary.
This limits practical utility. We make some remarks in Section 6 on
how to handle non triangular boundaries and discuss other limita-
tions and possible extension in Section 8.

2 BACKGROUND
As our results require an understanding of Schnyder labelings,
Schnyder realizations, and corresponding primal trees representing
the subdivision of the triangulations, we provide a brief introduction

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Efficient Embeddings in Exact Arithmetic • 1:3

here. For more (technical) details, including proofs, we refer readers
to the original publication of Schnyder [1990]. The topic of Schny-
der labelings has been studied extensively from a combinatorial
perspective, see for example Felsner [2001] or Brehm [2000].
We consider an orientable closed triangulated genus 0 surface

with unoriented graph𝐺 = (𝑉 , 𝐸), vertex set𝑉 and edge set 𝐸 ⊆ (𝑉
2
)
.

The graph is maximal planar as adding any edge to the edge set
would make the graph non-planar. We fix a triangular face 𝑡out to
be the outer face. The set of all inner triangles in the triangulation
is denoted by T ⊆ (𝑉

3
)
. Such a graph is topologically the same as a

triangle mesh with disk-topology and three edges on the boundary.
An orientation of any triangle 𝑡 ∈ T ∪ {𝑡out} of 𝐺 is a cyclic

ordering of its vertices. Note that there are always two possible
orientations of any 𝑡 . Two neighboring triangles 𝑡, 𝑡 ′ are said to
have compatible orientations, if their common edge {𝑖, 𝑗} appears
as 𝑖 𝑗 in the orientation of 𝑡 and as 𝑗𝑖 in the orientation of 𝑡 ′. A
global orientation of 𝐺 is a choice of orientation for every 𝑡 ∈ T ∪
{𝑡out} such that every two neighbouring triangles have compatible
orientations. Since 𝐺 is maximal planar, there always exist two
global orientations of 𝐺

An orientation around a vertex 𝑣 ∈ 𝑉 of𝐺 is a cyclic ordering of its
neighbours, such that {𝑢, 𝑣,𝑢′} ∈ T ∪ {𝑡out} for every 𝑢,𝑢′ ∈ 𝑉 that
appear as𝑢𝑢′ in the cyclic ordering. Notice that, again, around every
vertex 𝑣 there exist two possible orientations. A global orientation on
𝐺 induces an orientation around each vertex. Namely, the one that
𝑢′𝑣𝑢 is the orientation of {𝑢, 𝑣,𝑢′} ∈ T ∪ {𝑡out} for every 𝑢,𝑢′ ∈ 𝑉
that appear as 𝑢𝑢′ in the orientation around 𝑣 .

2.1 Schnyder Labeling
Let 𝐺 be a maximal planar graph. We fix a global orientation of 𝐺
and we call it the positive orientation for every 𝑡 ∈ T ∪{𝑡out} and for
every 𝑣 ∈ 𝑉 . The only other orientation, if ever needed is referred
to as negative orientation. Note that a global orientation can be
computed in linear time. Whenever𝐺 is embedded in the plane, the
positive orientation of each 𝑡 ∈ T is the counter clockwise (CCW)
orientation, the positive orientation of 𝑡out is the clockwise (CW)
orientation and the orientation around every 𝑣 ∈ 𝑉 is again the
CCW orientation. A Schnyder labeling of 𝐺 labels each corner of
every interior triangle with one of the three labels 0, 1 and 2 such
that

(1) in a single triangle 𝑡 ∈ T , each label appears exactly once.
Moreover the three labels always appear in the same order
in the positive cyclic orientation of 𝑡 (see Fig. 2a), and

(2) around a vertex 𝑣 ∈ 𝑉 , each label appears in a single non
empty interval. Moreover the three labels always appear in
this order in the positive cyclic orientation around 𝑣 (see
Fig. 2b).

In this work the order is always 0, 1, 2. Moreover, for any label
𝑐 ∈ {0, 1, 2} we name the remaining two labels 𝑐1, 𝑐2 ≠ 𝑐 the com-
plementary labels of 𝑐 . Schnyder [1990] showed that each maximal
planar graph has at least one Schnyder labeling that can be con-
structed in linear time. As the labels are usually colored in red, green
and blue, we will use the word color and label interchangeably.

0 1

2

(a) In each triangle the corners are
colored in the CCW order 0,1,2.

(b) For each vertex the colored cor-
ners appear in the CCW order 0,1,2.

Fig. 2. The two properties of a Schnyder labeling.

Fig. 3. Visualization of the three properties of a Schnyder realization (left)
within a Schnyder labeling (right).

2.2 Schnyder Realization
Note that, due to labeling rules, there cannot be two neighboring
interior triangles, whose common edge is opposite of same color
corners inside these two triangles.

This means that all three labels 0, 1, 2
must appear in the four adjacent corners
of every interior edge. In particular, there al-
ways must be one end of the edge such that
both adjacent corners have the same label 𝑐 .
If we orient each edge toward this end and

label the edge itself with 𝑐 , we arrive at a Schnyder realization. In
general, a Schnyder realization of a maximal planar graph 𝐺 is a
choice of orientation and 3-labeling for every interior edge of 𝐺 ,
defined by:

(1) Each interior vertex has exactly three outgoing edges, one
for each label 0, 1 and 2.

(2) The labels of the outgoing edges of every interior vertex
always appear in the order 0, 1, 2 in the positive cyclic orien-
tation around the vertex.

(3) For every interior vertex, all incoming edges, which appear in
the positive cyclic orientation around the vertex, between two
outgoing edges are labelled by the unique color not appearing
in these two outgoing edges.

By a counting argument, it can be deduced that in every Schnyder
realization, the three outer vertices have only incoming edges. Thus,
the corresponding Schnyder labeling is monochromatic around each
one of them. Moreover, using the three inner triangles incident
to the three outer edges, it is shown that each one of them has
a distinct color and that the three colors appear in the negative

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:4 • Ugo Finnendahl, Dimitrios Bogiokas, Pablo Robles Cervantes, and Marc Alexa

𝑣0𝑣1

𝑣2

𝑣0𝑣1

𝑣2

Fig. 4. A Schnyder labeling left and the induced Schnyder realization right.

orientation of the outer face (which is CCW, if 𝐺 is embedded). We
can therefore assign each boundary vertex a color and thus naming
them 𝑣0, 𝑣1, 𝑣2 ∈ 𝑉 .

The correspondence between the Schnyder labeling and the Schny-
der realization described above has the following properties:

(1) Each outgoing edge divides two different colored corner re-
gions that have a different color than this edge.

(2) Each incoming edge always enters in the corner region that
has the same color as the edge.

These properties can be seen in Fig. 3. This means that Schnyder
labelings and Schnyder realization have a one-to-one correspon-
dence and thus, every maximal planar graph also has at least one
Schnyder realization. An example is visible in Fig. 4.

2.3 Primal Trees and regions
Let 𝑐 ∈ {0, 1, 2} be any color and 𝑐1, 𝑐2 be the complementary colors
of 𝑐 . Schnyder [Schnyder 1990] showed that the directed subgraph
induced by the 𝑐-labeled edges is a tree. Then, adding the oriented
edges 𝑣𝑐1𝑣𝑐 and 𝑣𝑐2𝑣𝑐 to this tree creates a directed spanning tree.
We call these three spanning trees 𝑇0,𝑇1 and 𝑇2. They have the
following properties:

(1) The only sink of 𝑇𝑐 is 𝑣𝑐 , since every interior vertex has a
𝑐-labeled outgoing edge and, by construction, 𝑣𝑐1 , 𝑣𝑐2 have
one as well.

(2) There is a unique directed path inside 𝑇𝑐 from any vertex to
𝑣𝑐 , since 𝑇𝑐 is connected, has no cycles and no other sinks.

(3) Two paths of different color starting in an interior vertex do
not meet in another vertex. This follows directly from the
fixed cyclic ordering of the colored edges.

Since 𝑇𝑐 is a tree, between any two vertices 𝑖, 𝑗 ∈ 𝑉 there is at most
one oriented path from 𝑖 to 𝑗 inside 𝑇𝑐 . If it exists, we denote this
path by 𝑖→𝑐 𝑗 .
Given a vertex 𝑖 ∈ 𝑉 the three colored paths to the boundary

vertices partition the interior triangles into three disjoint regions
R𝑐𝑖 ⊆ T , which are according to the color 𝑐 of the opposite boundary
vertex – the single boundary vertex that is not in the region. This is
visualized in Fig. 5a.

𝑖𝑖

R0𝑖R0𝑖

R1𝑖R1𝑖
R2𝑖R2𝑖

𝑣2

𝑣0𝑣1

(a) The paths from 𝑖 to 𝑣0, 𝑖 to 𝑣1 and
𝑖 to 𝑣2 divide the triangulation into
the three regions.

𝑖𝑖

𝑗𝑗

R2𝑗R2𝑗

𝑣2

𝑣0𝑣1

(b) A vertex 𝑗 is within the 2 region
of vertex 𝑖 . Therefore the 2 region of
𝑗 is a subset of the 2 region of 𝑖 .

Fig. 5. Every vertex 𝑖 defines three regions R0
𝑖
, R1

𝑖
and R2

𝑖
.

2.4 Barycentric coordinates and Weights
Schnyder [1990] assigned barycentric coordinates or 𝑏0𝑖 , 𝑏

1
𝑖 , 𝑏

2
𝑖 to

each vertex 𝑖 , by counting the triangles in each colored region di-
vided by the number of all triangles:𝑏𝑐𝑖 = 1

2𝑛−5 |R𝑐𝑖 | with 𝑐 ∈ {0, 1, 2}.
He then showed that these coordinates form barycentric represen-
tations, which are a subset of all embeddings. For his proof it is
necessary that if a vertex 𝑖 is in a 𝑐 colored region of another vertex
𝑗 , formally if there exists some 𝑡 ∈ T , such that 𝑖 ∈ 𝑡 ∈ R𝑐𝑗 , then
R𝑐𝑖 ⊆ R𝑐𝑗 and therefore 𝑏𝑐𝑖 ≤ 𝑏𝑐𝑗 .
This approach was extended [Dhandapani 2010] by weighting

each triangle 𝑡 ∈ T with a weight 𝑤𝑡 ∈ Z such that the sum of
weights is unequal to zero.. So the barycentric coordinates (𝑏0𝑖 , 𝑏1𝑖 , 𝑏2𝑖)
of a vertex 𝑖 are defined by 𝑏𝑐𝑖 = 1∑

𝑡 ∈T 𝑤𝑡

∑
𝑡 ∈R𝑐𝑣 𝑤𝑡 with 𝑐 ∈ {0, 1, 2}.

As long as all weights are greater than zero, this still produces a
barycentric representation as the property R𝑐𝑖 ⊆ R𝑐𝑗 ⇒ 𝑏𝑐𝑖 ≤ 𝑏𝑐𝑗
holds. Notice that any scaling of the weights produces the same
barycentric coordinates.

In this work we choose to not divide by the normalization factor∑
𝑡 ∈T 𝑤𝑡 and record it as an additional coordinate, instead. This way

the barycentric coordinates are able to stay in Z and the weights are
no longer scaling invariant. More formally, we define the following
two spaces:

• The weight spaceW = Z | T | . Each element w ∈ W is an
assignment of weights to the inner triangles 𝑡 ∈ T , where
|T | = 2|𝑉 | − 5 according to Euler’s formula. We represent w
by a |T |-vector of integers (𝑤𝑡)𝑡 ∈T .
• The barycentric space B = Z2(|𝑉 |−3)+1. Each element b ∈ B
records two of the three unnormalized barycentric coordi-
nates of all inner vertices 𝑖 ∈ 𝑉 \ {𝑣0, 𝑣1, 𝑣2} and also records
the sum 𝑁 of all three unnormalized barycentric coordinates
of some vertex once, as it is the same for every vertex. This
space has dimension exactly 2(|𝑉 | − 3) + 1 = 2|𝑉 | − 5. To
ease the notation, we represent b by a |𝑉 |-vector of 3-vectors
(b𝑖)𝑖∈𝑉 , where b𝑖 = (𝑏0𝑖 , 𝑏1𝑖 , 𝑏2𝑖)𝑇 , such that 𝑏0𝑖 + 𝑏1𝑖 + 𝑏2𝑖 =
𝑁 for every 𝑖 ∈ 𝑉 . In this notation, we also write b𝑣0 =
(𝑁, 0, 0)𝑇 , b𝑣1 = (0, 𝑁 , 0)𝑇 , b𝑣2 = (0, 0, 𝑁)𝑇 , although they
are not really recorded in B.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Efficient Embeddings in Exact Arithmetic • 1:5

In Section 4 we see that the mapping between weight space and
barycentric space is bijective. One of our contributions is that we
show that the mapping can be calculated in linear time for both
directions. It is interesting to note that the mapping from weights
to a single vertex coordinate also needs linear time. This is opposite
to the mapping from barycentric space to a single weight, which
can be calculated in constant time.

3 RELATED WORK
Graph drawing methods in integers. Every planar graph has a

planar straight-line drawing by the theorems of István [1948]; Stein
[1951]; Wagner [1936]. Their results did not bound the grid-size
by any polynomial in the number of vertices 𝑛. De Fraysseix et al.
[1990] first introduced an asymptotically optimal straight-line em-
bedding on a (2𝑛− 4) × (𝑛− 2) grid in O(𝑛 log𝑛) time. Chrobak and
Payne [1995] reduced the time complexity to O(𝑛). Using Schnyder
labelings and the induced trees [Schnyder 1989], Schnyder [1990]
built upon his findings and presented two methods for drawing pla-
nar graphs on a (2𝑛− 5) × (2𝑛− 5) grid and a more compact version
using a (𝑛 − 2) × (𝑛 − 2) grid, both in linear time. All these methods
assume a triangulated planar graph with a three edge boundary.
Therefore all methods need to add edges until the graph is trian-
gulated and remove them after the embedding. Tutte [1960, 1963]
avoids this by introducing convex drawings, meaning that every
face will be embedded as a convex polygon, and proved that every
3-vertex-connected planar graph has a convex drawing. The embed-
ding can be found by solving a (sparse) linear system of equations.
The methods of both De Fraysseix et al. [1990] as well as Schny-
der [1990] were generalized to the same setting, namely convex
embeddings, retaining the linear time complexity ([Chrobak and
Kant 1997; Kant 1996] and [Battista et al. 1999; Bonichon et al. 2007;
Felsner 2001; Schnyder and Trotter 1992]).
Our method is based on the non-compact method of Schnyder.

Applications of Schnyder woods. Besides integer grid embeddings,
Schnyder woods were used in different applications. Aleardi et al.
[2009] extend Schnyder’s definitions and algorithms to closed ori-
entable surfaces of arbitrary genus to encode meshes of arbitrary
genus. The algorithms work in linear time (for fixed genus). Fel-
sner and Zickfeld [2008] draws a connection to orthogonal surfaces
by extending schnyder labelings to non triangular faces. Recently,
Barrera-Cruz et al. [2019] presents an improved method for morph-
ing between two planar drawings of the same triangulation while
maintaining straight-line planarity using Schnyder embeddings. He
and Zhang [2010] developed a greedy routing algorithm, a message
is forwarded to a neighbor that is closer to the destination, that
use Schnyder woods. Their method uses fewer bits to represent
the local coordinates compared to the classic approach. Another
application are cycle separators, which separate a graph into two
vertex sets with similar number of vertices. Castelli Aleardi [2019]
use a heuristic to balance Schnyder woods to improve the shape of
the regions.

Exact arithmetic and parametrizations. In the realm of generating
meshes (e.g., for simulation) it is standard practice to use robust
arithmetic [Brönnimann et al. 2023; Shewchuk 1996; Si 2015]. This

𝑣0𝑣1

𝑣2

(a) A Schnyder labeling and the cor-
responding dual tree S2.

𝑣0𝑣1

𝑣2

(b) A Schnyder labeling and all three
dual trees.

Fig. 6. A Schnyder labeling induces three dual trees that each spans over
all triangles.

can be done using exact computation [Yap 1997], but it is more
common to use multi-precision types and increase resolution as
needed to guarantee reliable predicates [Shewchuk 1997]

Interestingly, while parameterizationmethods for triangle meshes
are very similar in nature, it is uncommon to use such methods for
checking the orientation of triangles. Most methods that make ’guar-
antees’ are using floating point types and carefully select thresholds
for the signed area of a triangle so that despite inexact computation
the status of a correctly oriented triangle is reliable [Garanzha et al.
2021]. On the other hand, this decreases the available resolution
of the floating point type – we suspect that the problem cases we
found for Progressive Embedding [Shen et al. 2019] are resulting
from this limitation.

One of the (likely) very few parameterization methods that avoids
such problems by using exact arithmetic is for the 3D case, i.e., map-
ping a tetrahedral mesh into a convex domain [Campen et al. 2016].
Interestingly, their representation is also essentially barycentric
and they map any non-rational function to a rational one to avoid
dealing with numerical issues.

4 CONSTRUCTION
We present two novel linear time algorithms: The first one (Al-
gorithm 1) computes barycentric coordinates b ∈ B from weight
vectors w ∈ W; the second (Algorithm 2) computes the inverse,
i.e. w ∈ W from b ∈ B. For this, we extend the theory discussed
in Section 2, introducing new notions, namely dual binary trees,
dual regions, and dual edge labeling. We feel that the dual picture
simplifies the algorithms, both conceptually and implementing them
in practice.

4.1 Dual binary trees and dual edge labeling
We want to contribute a dual labeling that arises from a Schnyder
realization and the dual graph. A Schnyder realization induces three
different colored dual binary trees each one containing all triangles.
Given a triangle, these trees can be used to divide all vertices into
different regions.

Let 𝑐 ∈ {0, 1, 2} be any color and 𝑐1, 𝑐2 the complementary colors
of 𝑐 . There exists a dual spanning tree of 𝑇𝑐 in the dual graph 𝐺∗,
which consists of all edges in 𝐺∗ that correspond to the edges of

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:6 • Ugo Finnendahl, Dimitrios Bogiokas, Pablo Robles Cervantes, and Marc Alexa

𝐺 \𝑇𝑐 [Aigner and Ziegler 2009], i.e. all edges with color 𝑐1 or 𝑐2. We
call these dual spanning trees S0,S1,S2. We orient each S𝑐 by first
making the outer triangle the root of the tree and then orienting
each dual edge towards the root. We visualized an example ofS0,S1
and S2 in Fig. 6. This tree has the following properties.

(1) The root only has one child, namely the only inner triangle
incident to the boundary edge {𝑣𝑐1 , 𝑣𝑐2 }.

(2) It is a rooted binary tree, as a triangle has at most three
neighbouring triangles from which one is the parent, leaving
a maximum of two children.

Next, we will prove that there are three equivalent descriptions
of these dual trees.

Lemma 4.1. Given a maximal planar graph𝐺 , a Schnyder labeling
and its corresponding Schnyder realization, the following are equiva-
lent:
i For every 𝑐 ∈ {0, 1, 2}, S𝑐 is the dual tree defined above.
ii For every 𝑐 ∈ {0, 1, 2}, S𝑐 is a directed graph in𝐺∗, containing the

dual edges of all edges in𝐺 opposite of a 𝑐 labeled corner, oriented
outwards from the triangle that has this 𝑐 labeled corner.

iii For {𝑐, 𝑐1, 𝑐2} = {0, 1, 2}, where 𝑐, 𝑐1, 𝑐2 are in the same cyclic order
as 0, 1, 2, S𝑐 is a directed graph in 𝐺∗, containing the dual edges
of all 𝑐1 and all 𝑐2 edges of 𝐺 , oriented as follows:
• The 𝑐 labeled dual edge of a 𝑐1 edge 𝑒 is oriented from the triangle
that 𝑒 is directed opposite to the positive cyclic orientation (its
right triangle) to the triangle that 𝑒 is directed according to the
positive cyclic orientation (its left triangle).
• The 𝑐 labeled dual edge of a 𝑐2 edge is oriented from its left
triangle to its right triangle.

Proof. Let S𝑐 be the dual tree defined above. For the only child
of the root both ii and iii are trivially true. We then prove these prop-
erties inductively also for every left and every right child. Without
loss of generality we show the inductive step in the case of S2.

𝑝

𝑙 𝑟

Let 𝑝 ∈ T be an inner triangle satisfying
the inductive hypothesis and let 𝑙, 𝑟 ∈ T its
left and right child respectively. Then, be-
cause of the fixed cyclic ordering of the
Schnyder labeling, the edge in 𝐺 corre-

sponding to the dual edge connecting 𝑝 and 𝑙 is incident to the
1 and 2 corners inside 𝑝 . Since it corresponds to a dual edge inside
S2 it cannot be labeled by 2, so it is labeled by 1 and is oriented
like iii dictates. Similarly, the edge corresponding to the dual edge
connecting 𝑝 and 𝑟 is labeled by 0 and is also oriented as in iii. More-
over, there is exactly one admissible Schnyder labeling of 𝑙 and 𝑟
and in this labeling the corners in 𝑙 and 𝑟 opposite from 𝑝 are indeed
both colored by 2 as in ii.

For the inverse statement ii⇒i, notice that the dual spanning tree
visits each triangle once and each triangle has exactly one corner
labeled 𝑐 , so the description in ii determines fully S𝑐 . Similarly, for
iii⇒i, the edges of the 𝑐 dual spanning tree are exactly the dual 𝑐1
and 𝑐2 edges, so iii also fully determines S𝑐 . □

This description means that every triangle has three different
colored outgoing dual edges, appearing in the same positive cyclic
order as the corner labels. It must therefore have three, not nec-
essarily different colored, incoming edges, we can verify this in

S2𝑖 𝑗S2𝑖 𝑗
𝑖𝑖 𝑗𝑗

𝑣0𝑣1

𝑣2

𝑖𝑖 𝑗𝑗

R1𝑗R1𝑗

R1𝑖 \ R1𝑗R1𝑖 \ R1𝑗

𝑣0𝑣1

𝑣2

Fig. 7. The dual sub tree S2
𝑖 𝑗

is enclosed by 𝑖 𝑗 , 𝑖→2𝑣2 and 𝑗→2𝑣2 (left). As

S2
𝑖 𝑗

labeled 0, it contains all triangles of the region R1
𝑖
\ R1

𝑗
(right)

𝑡𝑡

L2
𝑡L2
𝑡

L0
𝑡L0
𝑡L1

𝑡L1
𝑡

𝑣0𝑣1

𝑣2

Fig. 8. The three dual paths from 𝑡 to the outer face divide the vertices in
three regions L0, L1 and L2.

Section 4.1. Now, we can see that the trees S𝑐 have the following
dual properties of 𝑇𝑐 :

(1) The only sink of S𝑐 is the outer face, since every interior
triangle has a 𝑐-labeled incoming dual edge.

(2) There is a unique directed dual path inside S𝑐 from any tri-
angle to the outer face, since S𝑐 is connected, has no cycles
and no other sinks.

(3) Two dual paths in S𝑐 of different color, starting in an interior
triangle, do not meet in another triangle except the outer face.
This follows from the fixed cycling ordering of the colored
dual edges.

Intuitively speaking, every sub tree in S𝑐 grows until hitting a 𝑐
colored edge, so the sub tree of an inner triangle 𝑡 ∈ T is enclosed by
the edge 𝑒 = {𝑖, 𝑗} ∈ 𝐸 shared with its parent triangle and otherwise
only by 𝑐 colored edges. We call 𝑒 the edge above the sub tree and
we denote by S𝑐𝑒 the sub tree below the edge 𝑒 . As the vertices 𝑖 and
𝑗 have a 𝑐 colored path to 𝑣𝑐 , the sub tree below 𝑒 is enclosed by 𝑒
and the two 𝑐 paths→𝑐 from 𝑖 to 𝑣𝑐 and 𝑗 to 𝑣 𝑗 denoted with 𝑖→𝑐𝑣𝑐
and 𝑗→𝑐𝑣𝑐 , respectively. In fact the sub tree contains all triangles
within this undirected cycle, since S𝑐 is a dual spanning tree and
it cannot cross any 𝑐 colored edge. This is depicted in Fig. 7 (left)
with an example edge 𝑖, 𝑗 . We use this property in Section 4.2 to
show that we can construct two of the colored regions of 𝑖 by the
unification of such sub graphs (already shown on the right).

Similar to the primal graph, each inner triangle 𝑡 ∈ T partitions
the vertices into three disjoint dual regions by the three dual paths
to the outer face 𝑡out. We name the dual regions L𝑐

𝑡 ⊆ 𝑉 , where 𝑐 is

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Efficient Embeddings in Exact Arithmetic • 1:7

the color of the dual path not taking part in its boundary. It is also
the color of the single boundary vertex 𝑣𝑐 within this region. This is
depicted in Fig. 8. The boundary ofL𝑐

𝑡 is the set of all inner triangles
on the 𝑐1 and 𝑐2-dual paths from 𝑡 to the outer face. Equivalently, it
is the set of all inner triangles 𝑠 ∈ T with at least one vertex in L𝑐

𝑡
and at least one vertex outside of L𝑐

𝑡 . The dual regions have similar
properties to the primal regions. Here we prove the dual of Lemma
5.2 in Schnyder [Schnyder 1990], i.e. that if a triangle 𝑠 touches the
𝑐-colored dual region of another triangle 𝑡 , then L𝑐

𝑠 ⊆ L𝑐
𝑡 :

Lemma 4.2. Let 𝐺 be a maximal planar graph together with a
Schnyder labeling and its corresponding Schnyder realization. More-
over, let 𝑠, 𝑡 ∈ T be any two inner triangles such that 𝑠 ∩ L𝑐

𝑡 ≠ ∅ for
some label 𝑐 ∈ {0, 1, 2}. Then, it is true that L𝑐

𝑠 ⊆ L𝑐
𝑡 .

Proof. Without loss of generality, we prove it for 𝑐 = 2. Let
𝑥 ∈ T ∪ {𝑡out} be the first triangle on the 0-dual path from 𝑠 to
𝑡out that lies also in the boundary of L2

𝑡 . Because of the fixed cyclic
ordering of the outgoing dual edges of 𝑥 , the triangle 𝑥 cannot be
on the 1 dual path from 𝑡 to 𝑡out, so 𝑥 is on the 0-dual path from 𝑡
to 𝑡out and also 𝑥 ≠ 𝑡 . Since the dual paths of some color cannot
form any undirected cycles, the 0-dual path from 𝑡 to the outer face
and from 𝑠 to the outer face overlap from 𝑥 on. Similarly, the first
𝑦 ∈ T ∪ {𝑡out} on the 1-dual path from 𝑠 to 𝑡out that lies in the
boundary of L2

𝑡 is also on the 1-dual path from 𝑡 to the outer face
and the two 1-dual paths from 𝑡 and from 𝑠 to the outer face overlap
from 𝑦 on. This means that every triangle on the boundary of L𝑐

𝑠
touches L𝑐

𝑡 , which means that L𝑐
𝑠 ⊆ L𝑐

𝑡 . □

The dual regions and the primal regions are in fact associated
through the following relation. All vertices 𝑖 within the 𝑐 colored
dual region of the triangle 𝑡 have 𝑡 in their 𝑐 colored primal region,
or more formally:

Lemma 4.3. Let 𝐺 be a maximal planar graph together with a
Schnyder labeling and its corresponding Schnyder realization. More-
over, let 𝑡 ∈ T be any inner triangle and 𝑖 ∈ 𝑉 any vertex. Then,
𝑖 ∈ L𝑐

𝑡 ⇔ 𝑡 ∈ R𝑐𝑖 .
Proof. Let 𝑐1 and 𝑐2 be the complementary colors of 𝑐 . Then,

given a vertex 𝑖 ∈ L𝑐
𝑡 , let {𝑢, 𝑣} ∈ 𝐸 be the first edge on the 𝑐1-path

𝑖→𝑐1𝑣𝑐1 such that𝑢 ∈ L𝑐
𝑡 and 𝑣 ∉ L𝑐

𝑡 . Since the 𝑐1 dual path can not
cross a 𝑐1 edge, the dual of {𝑢, 𝑣} must be labeled by 𝑐2. The same
holds for the 𝑐2 path 𝑖→𝑐2𝑣𝑐2 and the 𝑐1 dual path. This means that
the 𝑐1 path 𝑖→𝑐1𝑣𝑐1 and the 𝑐2 path 𝑖→𝑐2𝑣𝑐2 separate the triangle 𝑡
from 𝑣𝑐 which is equivalent to 𝑡 ∈ R𝑐𝑖 . □

Now that we introduced all necessary data structures, we can
describe the mapping 𝑀 from barycentric space to weight space
and its inverse.

4.2 Forward - From weights to barycentric coordinates
Letw ∈ W be some weight vector and let us fix a Schnyder labeling
for a maximal planar graph𝐺 = (𝑉 , 𝐸). To calculate the barycentric
coordinate vector b = 𝑀w ∈ B, we first traverse the dual binary
tree of one key color 𝑐 . Then in the second step we traverse the
primal trees of the complementary colors of 𝑐 . In the following we
assume 2 is the chosen key color.

Given an edge 𝑒 = {𝑖, 𝑗} ∈ 𝐸, that divides a parent and child
triangle of S2 , this edge is either 0 or 1, as 2 edges can not divide a
child and a parent inS2. As already explained, the sub treeS2𝑒 below
𝑒 contains all triangles that are enclosed by the undirected cycle 𝑒 ,
𝑗→2𝑣2, 𝑣2←2𝑖 . Recall that the oriented boundary edges 𝑣0𝑣2 and
𝑣1𝑣2 are also considered 2 paths. W.l.o.g. we assume that the edge 𝑒
is labeled 0 and points from 𝑖 to 𝑗 . The 1 region R1𝑗 of the vertex 𝑗 is
enclosed by the unoriented cycle 𝑗→0𝑣0, {𝑣0, 𝑣2}, 𝑣2←2 𝑗 . As 𝑗 is in
the 0 path 𝑖→0𝑣0, the 1 region R1𝑖 of the vertex 𝑖 is enclosed by the
unoriented cycle 𝑒 , 𝑗→0𝑣0, {𝑣0, 𝑣2}, 𝑣2←2𝑖 . This means R1𝑖 \ R1𝑗 is
enclosed by the cycle 𝑒 , 𝑗→2𝑣2, 𝑣2←2𝑖 , which is exactly the sub tree
S2𝑒 , i.e. the sub tree below 𝑒 . This example is shown on the right in
Fig. 7. Formally, for every edge 𝑒 = {𝑖, 𝑗} ∈ 𝐸 colored by 𝑐1 ∈ {0, 1}
and oriented from 𝑖 to 𝑗 we write

S2𝑒 = R𝑐2𝑖 \ R
𝑐2
𝑗 , (1)

where 𝑐1, 𝑐2 are the complementary colors of 2. Inductively, for any
given inner vertex 𝑖 ∈ 𝑉 and color 𝑐1 ∈ {0, 1}, the union of the sub
trees below every 𝑐1 edge along the path 𝑖→𝑐1𝑣𝑐1 is the 𝑐2 region of
𝑖 , where 𝑐2 is the third color. Formally R𝑐2𝑖 =

⋃
𝑒∈𝑖→𝑐1 𝑣𝑐1

S2𝑒 .
This insight allows for a simple algorithm calculating the barycen-

tric coordinates for all interior vertices at once. First we need to
calculate the summed weights 𝑠𝑒 of all triangles within the sub tree
S2𝑒 for all sub trees:

𝑠𝑒 =
∑︁
𝑡 ∈S2𝑒

𝑤𝑡 . (2)

For 𝑒 = {𝑖, 𝑗} ∈ 𝐸, let 𝑡 = {𝑖, 𝑗, 𝑘} ∈ T be the root of S2𝑒 . Then
S2𝑒 = {𝑡} ∪ S2{ 𝑗,𝑘 } ∪ S2{𝑘,𝑖 } and it follows that

𝑠𝑒 = 𝑤𝑡 + 𝑠 { 𝑗,𝑘 } + 𝑠 {𝑘,𝑖 } , (3)

as S2{ 𝑗,𝑘 } and S2{𝑘,𝑖 } are disjoint and do not contain 𝑡 . For this com-
putation, we set 𝑠𝑒 = 0 for every edge 𝑒 labeled by 2, or equivalently
we can think such an edge as being above an empty sub tree. This
can be done in linear time by traversing the 2 dual binary tree in
post-order. For our visualizations we store 𝑠𝑒 in the edge 𝑒 .

Note that we can calculate the 1 coordinate of 𝑖 given the 1 coor-
dinate of its 0 parent 𝑗 , by adding to it the weight stored in the edge
{𝑖, 𝑗}. So, starting with 𝑏1𝑣0 = 0, we traverse 𝑇0 in pre-order and for
every oriented edge 𝑖 𝑗 , we compute

𝑏1𝑖 = 𝑏1𝑗 + 𝑠 {𝑖, 𝑗 } . (4)

Then, we repeat the same for the 0 coordinates with the 1 primal
tree. Lastly, we compute 𝑁 =

∑
𝑡 ∈T 𝑤𝑡 to be the last entry of B,

since, in our notation, 𝑏2𝑖 =
∑
𝑡 ∈T 𝑤𝑡 − 𝑏0𝑖 − 𝑏1𝑖 for every 𝑖 ∈ 𝑉 .

This algorithm is listed in Algorithm 1 and an example of such an
embedding is shown in Fig. 9.

4.3 Backward - From barycentric coordinates to weights
Barrera-Cruz et al. [2014] pointed out, that the backward step is pos-
sible by solving a linear system of equations. Felsner and Zickfeld
[2008] proved that the LSE has full rank. We present a faster algo-
rithm that is even simpler than inverting the steps of the algorithm
mentioned in Section 4.2.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:8 • Ugo Finnendahl, Dimitrios Bogiokas, Pablo Robles Cervantes, and Marc Alexa

ALGORITHM 1: Weights to Barycentric Coordinates
Input :w ∈ W
Output :b ∈ B
sum_weights({𝑣0, 𝑣1}) // Traverse S2𝑣0𝑣1 in post-order.

calc_bary(𝑣0, 0, 0) // Traverse the 0 tree in pre-order.

calc_bary(𝑣1, 1, 0) // Traverse the 1 tree in pre-order.

𝑏2𝑣2 =
∑

𝑡 ∈T 𝑤𝑡

Function sum_weights(𝑒 ∈ 𝐸)
if 𝑒 is 2 then

𝑠𝑒 := 0
return 𝑠𝑒

end
{𝑖, 𝑗 } := 𝑒

𝑡 := {𝑖, 𝑗, 𝑘 } ∈ S2𝑒 // Get the root of S2𝑒 .
𝑠𝑒 := 𝑤𝑡+ sum_weights({ 𝑗, 𝑘 }) + sum_weights({𝑘, 𝑖 })
return 𝑠𝑒

end

Function calc_bary(𝑗 ∈ 𝑉 , 𝑐 ∈ {0, 1}, 𝑏 ∈ Z)
{𝑐𝑜 } := {0, 1} \ {𝑐 }
𝑏𝑐𝑜
𝑗

:= 𝑏

for 𝑖 𝑗 ∈ 𝑇𝑐 do // Iterate over children of 𝑗.
calc_bary(𝑖, 𝑐, 𝑏𝑐𝑜

𝑗
+ 𝑠{𝑖,𝑗 })

end
end

Fig. 9. Two embeddings generated by the forward transformation. The left
was generated with all weights set to 1. The right has one weight set to -50.
Note that multiple triangles have negative area (red) in the right example.

Let 𝐺 be a maximal planar graph, together with a Schnyder la-
belling and its corresponding Schnyder realization. For any barycen-
tric coordinates b ∈ B, we compute the corresponding weight
assignment w = 𝑀−1b as follows: Let 𝑐1, 𝑐2 be the complementary
labels of 2 and let 𝑒 = {𝑖, 𝑗} ∈ 𝐸 be any edge corresponding to a
dual edge in S2, labeled by 𝑐1 and oriented as 𝑖 𝑗 in the Schnyder
realization. Then, as 𝑏𝑐2𝑖 = 𝑏𝑐2𝑗 + 𝑠𝑒 , we can easily reconstruct the
weight 𝑠𝑒 stored in 𝑒 above the 2 dual binary sub tree S2𝑒 :

𝑠𝑒 =


𝑏1𝑖 − 𝑏1𝑗 If 𝑒 is 0,
𝑏0𝑖 − 𝑏0𝑗 if 𝑒 is 1,
0 if 𝑒 is 2.

(5)

Given a triangle 𝑡 = {𝑖, 𝑗, 𝑘} ∈ T with the 2 colored corner at the
vertex 𝑘 , we know that 𝑡 ∈ S2{𝑖, 𝑗 } , by Lemma 4.1ii. Thus, using

ALGORITHM 2: Barycentric Coordinates to Weights
Input :b ∈ B
Output :w ∈ W
for 𝑡 ∈ T do

𝑤𝑡 := 0
/* Iterate over all undirected edges {𝑖, 𝑗 } in 𝑡. We

assume 𝑖 and 𝑗 appear in positive cyclic order
within 𝑡. */

for {𝑖, 𝑗 } ∈ 𝑡 do
if {𝑖, 𝑗 } is 0 then

𝑤𝑡 += (𝑏1𝑗 − 𝑏1𝑖)
else if {𝑖, 𝑗 } is 1 then

𝑤𝑡 += (𝑏0𝑖 − 𝑏0𝑗)
end

end
end

Eq. (3) we directly get

𝑤𝑡 = 𝑠 {𝑖, 𝑗 } − 𝑠 { 𝑗,𝑘 } − 𝑠 {𝑘,𝑖 } . (6)

That can be directly calculated in a loop over all triangles, since for
each triangle 𝑡 ∈ T we only have to access the Schnyder labeling, in
order to find out which of the three edges is the one that contributes
positive and how every edge is oriented.
We can simplify the way this computation is written, using

Lemma 4.1iii. Let 𝑒 = {𝑖, 𝑗} be a 0 labeled edge, oriented as 𝑖 𝑗 . Then
its dual edge insideS2 is oriented from 𝑒’s right triangle 𝑟 = {𝑖, 𝑗, 𝑘1}
to 𝑒’s left triangle 𝑝 = {𝑖, 𝑗, 𝑘2}. This means that the positive cyclic
ordering of 𝑟 is 𝑗𝑖𝑘1, whereas the positive cyclic ordering of 𝑝 is
𝑖 𝑗𝑘2. Also, 𝑠𝑒 contributes positive in 𝑝 and negative in 𝑟 , because
𝑝 is the parent of 𝑟 . So, we get𝑤𝑟 = 𝑏1𝑖 − 𝑏1𝑗 ± 𝑠 {𝑖,𝑘1 } ± 𝑠 { 𝑗,𝑘1 } and
𝑤𝑝 = 𝑏1𝑗 − 𝑏1𝑖 ± 𝑠 {𝑖,𝑘2 } ± 𝑠 { 𝑗,𝑘2 } . So, in general, for some triangle
𝑡 = {𝑎, 𝑏, 𝑐} with positive cyclic orientation 𝑎𝑏𝑐 , if {𝑎, 𝑏} is labeled
0, its contribution in𝑤𝑡 is 𝑏1𝑏 − 𝑏1𝑎 . Completely symmetrically, it is
true that if {𝑎, 𝑏} is labeled 1, its contribution in𝑤𝑡 is 𝑏0𝑎 − 𝑏0𝑏 . This
algorithm is listed in Algorithm 2.
Four of the eight different edge labelings possible and their re-

spective equation for the weights are depicted in Fig. 10. The last
four can be calculated respectively, by replacing the top 1 edge {𝑖, 𝑗}
(here oriented as 𝑖 𝑗) with a 0 edge, oriented in the opposite way 𝑗𝑖 .

It is therefore also easy to translate the barycentric coordinates
of a vertex in weight space, as a change in barycentric coordinates
of 𝑖 only influences the incident triangles of 𝑖 . In fact it only effects
the (at most 6) triangles incident to the out going edges of 𝑖 . If given
a triangle incident to 𝑖 contains two edges pointing towards 𝑖 , the
barycentric coordinates of 𝑖 , that would influence the weight of the
triangle, cancel out.
We can use this backwards algorithm to bring any planar trian-

gulation, even those with flipped triangles, into weight space. There
we could naively set every negative weight to 1, as only positive
weights will lead to a valid embedding. This leads to embeddings
that look similar to Schnyder embeddings with weights equal to
one as we can see in Fig. 11. We will now present a method that
introduces less distortions to the input mesh.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Efficient Embeddings in Exact Arithmetic • 1:9

𝑡

𝑠{𝑖, 𝑗 }𝑠 {𝑖, 𝑗 }

𝑠{𝑘,𝑗 }𝑠 {𝑘,𝑗 } 𝑠{𝑘,𝑖 }𝑠 {𝑘,𝑖 }

𝑖𝑗

𝑘

(a) 𝑤𝑡 = 𝑏0
𝑖
−𝑏0

𝑘
+𝑏1

𝑖
−𝑏1

𝑘
= 𝑏2

𝑘
−𝑏2

𝑖

𝑡

𝑠{𝑖, 𝑗 }𝑠 {𝑖, 𝑗 }

00 𝑠{𝑘,𝑖 }𝑠 {𝑘,𝑖 }

𝑖𝑗

𝑘

(b) 𝑤𝑡 = 𝑏0
𝑖
− 𝑏0

𝑗
+ 𝑏1

𝑖
− 𝑏1

𝑘

𝑡

𝑠{𝑖, 𝑗 }𝑠 {𝑖, 𝑗 }

𝑠{𝑘,𝑗 }𝑠 {𝑘,𝑗 } 00

𝑖𝑗

𝑘

(c) 𝑤𝑡 = 𝑏0
𝑖
− 𝑏0

𝑘

𝑡

𝑠{𝑖, 𝑗 }𝑠 {𝑖, 𝑗 }

00 00

𝑖𝑗

𝑘

(d) 𝑤𝑡 = 𝑏0
𝑖
− 𝑏0

𝑗

Fig. 10. Four of the eight possible Schnyder realizations for a triangle. To
get the other four we just have to flip the orientation of the top edge from
𝑖 𝑗 to 𝑗𝑖 and change its color to 0. The weight can be retrieved using two or
four barycentric coordinates.

Fig. 11. Tutte embedding fails to embed the swirl mesh #40261 from
Thingi10K [Zhou and Jacobson 2016] (left) in doubles. We fixed it with
the naive approach, transforming it to weight space and set all negative
weights to 1. The resulting embedding (mid) hardly resembles the input.
Applying the unflip strategy results in less distored results (right).

5 GENERATING EMBEDDINGS
With the algorithms just described, any maximal planar graph𝐺 can
be embedded in the plane by choosing arbitrary positive weights
w > 0 and sending them through the forward transformation. Con-
versely, we can take any planar realization of a maximal planar
and represent it using weights w. The weights are not necessarily
positive even if the planar triangulation is embedded.
The latter transformation is useful for starting with a given pla-

nar realization, detecting flipped triangles, and then modifying the
weights so that all triangles are correctly oriented. As we show be-
low, this can be done efficiently. A practical prerequisite is, however,
that the planar triangulation is represented on a discrete grid. If this
is not the case the positions need to be quantized. This may cause
additional degeneracy, but this is inconsequential. We discuss the
issue of resolution of the discrete grid in Section 6.

Orientation of a triangle. Given a maximal planar graph 𝐺 , to-
gether with a fixed global orientation of 𝐺 and a mapping of 𝐺
on the plane, we say that a triangle 𝑡 ∈ 𝐺 has positive area, if the
positive orientation of 𝑡 is the same cyclic ordering of its vertices
as their CCW ordering in the plane. Given that the boundary of

𝐺 is a triangle, it cannot be part of any overlapping triangles. If
all inner triangles 𝑡 ∈ T have positive area, 𝐺 is embedded. For
any vector of barycentric coordinates b ∈ B this is equivalent to
det(b𝑖 , b𝑗 , b𝑘) > 0 for every 𝑡 = {𝑖, 𝑗, 𝑘} ∈ T with positive cyclic
orientation 𝑖 𝑗𝑘 . Let 𝑁 = 𝑏0𝑖 + 𝑏1𝑖 + 𝑏2𝑖 = 𝑏0𝑗 + 𝑏1𝑗 + 𝑏2𝑗 = 𝑏0

𝑘
+ 𝑏1

𝑘
+ 𝑏2

𝑘
,

then it is true that

det(b𝑖 , b𝑗 , b𝑘) = 𝑁 det
[
𝑏0𝑖 − 𝑏0𝑘 𝑏0𝑗 − 𝑏0𝑘
𝑏1𝑖 − 𝑏1𝑘 𝑏1𝑗 − 𝑏1𝑘

]
(7)

and so, we can always check this smaller determinant.

Increasing weights to create embeddings. It seems that there is no
apparent connection between flipped triangles and negative weights.
It is easy to see that flipped triangles can have positive weights and
negatively weighted triangles can have positive area. All we know
is that if all weights are positive then we have a barycentric rep-
resentation [Felsner and Zickfeld 2008], all triangles have positive
area [Felsner and Zickfeld 2008], therefore a valid embedding. This
immediately leads to a fast and straightforward but rather naive
approach: set all non-positive weights of the planar realization to a
positive integer (e.g. 1). This algorithm runs in linear time. The prob-
lem with this strategy is that given a ’random’ triangulation, half
of the weights are negative. Empirically, embedded triangulations
or triangulations with only few flipped triangles still have a large
number of negative weights. This means a lot of weights change,
resulting in a triangulation very different to the input one, e.g. see
Fig. 11.
We present a strategy that iteratively increases weights until

all triangles have positive area, without necessarily making them
positive. Several technical results are necessary to show that this
will lead to a terminating algorithm.

Fully extended triangles. Let 𝑡 ∈ T be any inner triangle in the
triangulation of 𝐺 . Moreover, let 𝑡0, 𝑡1, 𝑡2 be its three vertices, such
that the corner in 𝑡 at 𝑡𝑐 is colored 𝑐 in the Schnyder labeling. Since
the three labels always appear in the cyclic order 0, 1, 2 in positive
orientation of 𝑡 , we deduce that 𝑡0𝑡1𝑡2 is the cyclic positive orien-
tation of 𝑡 . Note that the three dual paths starting from 𝑡 to the
outer face separate each vertex of 𝑡 into a different dual region and
moreover, 𝑡𝑐 ∈ R𝑐𝑡 . Given barycentric coordinates b ∈ B, we will
call an inner triangle 𝑡 ∈ T fully extended with respect to b, if for
every 𝑐 ∈ {0, 1, 2}, 𝑡𝑐 is the vertex closest to 𝑣𝑐 among 𝑡0, 𝑡1, 𝑡2 or,
more formally, if the following inequalities are true:

𝑏0
𝑡0

> max{𝑏0
𝑡1
, 𝑏0

𝑡2
},

𝑏1
𝑡1

> max{𝑏1
𝑡2
, 𝑏1

𝑡0
},

𝑏2
𝑡2

> max{𝑏2
𝑡0
, 𝑏2

𝑡1
}.

(8)

Lemma 5.1. Let𝐺 be amaximal planar graph, equipped with a fixed
Schnyder labeling and T be the set of all inner triangles. Moreover,
let b ∈ B be a collection of barycentric coordinates and 𝑡 ∈ T be any
fully extended inner triangle with respect to b. Then 𝑡 has positive
area.

Proof. Since 𝑡0𝑡1𝑡2 is the positive cyclic orientation of 𝑡 , it suf-
fices to show that the points b𝑡0 , b𝑡1 , b𝑡2 in the plane appear in CCW
cyclic ordering.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:10 • Ugo Finnendahl, Dimitrios Bogiokas, Pablo Robles Cervantes, and Marc Alexa

𝑣2

𝑣0𝑣1

ℓ0ℓ1

ℓ2

𝑝01𝑝01

𝑝12𝑝12 𝑝20𝑝20

𝑡0𝑡0
𝑡1𝑡1

𝑡2𝑡2

We now divide the plane {(𝑥,𝑦, 𝑧) ∈ Z3 :
𝑥 + 𝑦 + 𝑧 = 1} using these three lines
ℓ0 : 𝑥 = 𝑏0

𝑡0
, ℓ1 : 𝑦 = 𝑏1

𝑡1
and ℓ2 : 𝑧 = 𝑏2

𝑡2
.

These lines are parallel to the boundary
edges {𝑣1, 𝑣2}, {𝑣2, 𝑣0} and {𝑣0, 𝑣1} respec-
tively, so, in particular, no two of them are
parallel to each other. Let 𝑝01, 𝑝12, 𝑝20 be
the three intersection points. Because of
the fixed cyclic ordering of 𝑣0, 𝑣1, 𝑣2, the

points 𝑝01, 𝑝12, 𝑝20 appear also CCW.
Since 𝑡 is fully extended, the inequalities in ineqs. (8) imply that

for every 𝑐 ∈ {0, 1, 2}, 𝑡𝑐 lies on the line ℓ𝑐 , between the two points
𝑝𝑐𝑐1 and 𝑝𝑐2𝑐 , where 𝑐1, 𝑐2 are the complementary labels of 𝑐 . This
means that 𝑡0, 𝑡1, 𝑡2 also appear in this CCW order. □

Increasing a single weight. For the rest of this section, we will
investigate how the barycentric coordinates of any vertex 𝑖 ∈ 𝑉
change if we increase the weight of one triangle 𝑡 ∈ T . Given
some original w ∈ W, let b = 𝑀w ∈ B be the corresponding
barycentric coordinates and 𝛿 ∈ Z>0 be any positive integer. Let now
w′ = w + 𝛿𝑒𝑡 be the new weight assignment, leaving every weight
the same, except𝑤 ′𝑡 = 𝑤𝑡 +𝛿 and denote by b′ = 𝑀w′ = 𝑀 (w+𝛿𝑒𝑡)
the new barycentric coordinates. Choose 𝑐 ∈ {0, 1, 2} to be that
label, for which 𝑖 ∈ L𝑐

𝑡 . Then, the new barycentric coordinates of 𝑖
are

𝑏′𝑐𝑖 = 𝑏𝑐𝑖 + 𝛿, 𝑏′𝑐1𝑖 = 𝑏𝑐1𝑖 , 𝑏′𝑐2𝑖 = 𝑏𝑐2𝑖 , (9)
where 𝑐1, 𝑐2 are the complementary labels of 𝑐 . This can easily be
seen using the duality 𝑖 ∈ L𝑐

𝑡 ⇔ 𝑡 ∈ R𝑐𝑖 and the definition of 𝑀 .
Indeed, the weight change of 𝑡 only affects the cumulative weight
of R𝑐𝑖 and thus the value of 𝑏′𝑐𝑖 , leaving the other two coordinates
unaffected. Notice that this change also affects the sum of all weights,
as

∑
𝑡 ∈T 𝑤 ′𝑡 =

∑
𝑡 ∈T 𝑤𝑡 + 𝛿 .

Proposition 5.2. Let 𝐺 be a maximal planar graph, equipped
with a fixed Schnyder labeling and T be the set of all inner triangles.
Moreover, let w = (𝑤𝑡)𝑡 ∈T ∈ W be an assignment of weights and
𝑡 ∈ T be any inner triangle. Then, there exists some 𝛿0 ∈ Z>0 such
that for every 𝛿 ∈ Z>0 with 𝛿 ≥ 𝛿0, 𝑡 is fully extended w.r.t. the new
barycentric coordinates𝑀 (w + 𝛿𝑒𝑡) ∈ B.

Proof. Let w′ = w + 𝛿𝑒𝑡 , b = 𝑀w and b′ = 𝑀w′ = 𝑀 (w + 𝛿𝑒𝑡).
Since 𝑡𝑐 ∈ L𝑐

𝑡 , it is true that 𝑏′𝑐𝑡𝑐 = 𝑏𝑐𝑡𝑐 + 𝛿 , for every 𝑐 ∈ {0, 1, 2},
because of Eq. (9). Also, the sum of all weights is increased by 𝛿 as
well. This means that:

lim
𝛿→∞


b′𝑇
𝑡0∑

𝑡 ∈T 𝑤′𝑡
b′𝑇
𝑡1∑

𝑡 ∈T 𝑤′𝑡
b′𝑇
𝑡2∑

𝑡 ∈T 𝑤′𝑡


= lim
𝛿→∞


𝑏0
𝑡0
+𝛿

𝛿+∑𝑡 ∈T 𝑤𝑡

𝑏1
𝑡0

𝛿+∑𝑡 ∈T 𝑤𝑡

𝑏2
𝑡0

𝛿+∑𝑡 ∈T 𝑤𝑡

𝑏0
𝑡1

𝛿+∑𝑡 ∈T 𝑤𝑡

𝑏1
𝑡1
+𝛿

𝛿+∑𝑡 ∈T 𝑤𝑡

𝑏2
𝑡1

𝛿+∑𝑡 ∈T 𝑤𝑡

𝑏0
𝑡2

𝛿+∑𝑡 ∈T 𝑤𝑡

𝑏1
𝑡2

𝛿+∑𝑡 ∈T 𝑤𝑡

𝑏2
𝑡2
+𝛿

𝛿+∑𝑡 ∈T 𝑤𝑡


=


1 0 0
0 1 0
0 0 1

 = lim
𝛿→∞


b′𝑇𝑣0∑
𝑡 ∈T 𝑤′𝑡
b′𝑇𝑣1∑
𝑡 ∈T 𝑤′𝑡
b′𝑇𝑣2∑
𝑡 ∈T 𝑤′𝑡


.

(10)

In other words, by increasing the weight of a triangle we deform
the triangle towards the shape of the boundary triangle. In partic-
ular, there exists some 𝛿0, such that for all 𝛿 ≥ 𝛿0, the following
inequalities hold simultaneously:

𝑏0
𝑡0
+ 𝛿

𝛿 +∑𝑡 ∈T 𝑤𝑡
>

1
2 ,

𝑏1
𝑡1
+ 𝛿

𝛿 +∑𝑡 ∈T 𝑤𝑡
>

1
2 ,

𝑏2
𝑡2
+ 𝛿

𝛿 +∑𝑡 ∈T 𝑤𝑡
>

1
2 . (11)

Since 𝑏′0𝑖 + 𝑏′1𝑖 + 𝑏′2𝑖 = 𝛿 + ∑
𝑡 ∈T 𝑤𝑡 =

∑
𝑡 ∈T 𝑤 ′𝑡 for every 𝑖 ∈

{𝑡0, 𝑡1, 𝑡2}, the ineqs. (11) imply that 𝑏′𝑐𝑡𝑐 > 1
2
∑
𝑡 ∈T 𝑤 ′𝑡 and 𝑏′𝑐1𝑡𝑐 +

𝑏′𝑐2𝑡𝑐 < 1
2
∑
𝑡 ∈T 𝑤 ′𝑡 , where 𝑐1, 𝑐2 are the two complementary labels of

𝑐 . This proves that for every 𝛿 ≥ 𝛿0, 𝑡 is fully extended with respect
to b′. □

In particular, using Lemma 5.1, this means that by continuously
increasing the weight of a triangle, this triangle eventually stays
unflipped.

Proposition 5.3. Let 𝐺 be a maximal planar graph, equipped
with a fixed Schnyder labeling and T be the set of all inner triangles.
Moreover, let w = (𝑤𝑡)𝑡 ∈T ∈ W be an assignment of weights, 𝑡 ∈ T
be any inner triangle fully extended with respect to b = 𝑀w ∈ B and
𝑠 ∈ T be any other triangle. Then, for every 𝛿 ∈ Z>0, 𝑡 remains fully
extended with respect to b′ = 𝑀 (w + 𝛿𝑒𝑠) ∈ B.

Proof. We make a case distinction based on how many different
dual regions of 𝑠 contain some vertex of 𝑡 . We have three cases, as 𝑡
can touch just one, two of them or all three of them. Let 𝑡0, 𝑡1, 𝑡2 be
the usual names of the vertices of 𝑡 .

(1) In case all vertices of 𝑡 are in the same dual region of 𝑠 , they
get translated by the same amount which does not change the
shape of 𝑡 . Formally, let 𝑡0, 𝑡1, 𝑡2 ∈ L𝑐

𝑠 for some 𝑐 ∈ {0, 1, 2}.
Then, according to Eq. (9) only 𝑏′𝑐

𝑡0
, 𝑏′𝑐

𝑡1
, 𝑏′𝑐

𝑡2
change. So, two

of the three inequalities in ineqs. (8) remain true in the new
coordinates and for the last one we have 𝑏𝑐𝑡𝑐 +𝛿 > max{𝑏𝑐𝑡𝑐1 +
𝛿, 𝑏𝑐𝑡𝑐2 + 𝛿}, where 𝑐1, 𝑐2 are the complementary labels of 𝑐 .
This proves that 𝑡 remains fully extended.

(2) In case 𝑡 lies in only two dual regions of 𝑠 , there exists exactly
one 𝑐 ∈ {0, 1, 2} such that L𝑐

𝑠 ∩𝑡 = ∅. Let 𝑐1, 𝑐2 be the comple-
mentary labels of 𝑐 . Notice that 𝑡 is on the 𝑐 dual path from 𝑠
to the outer face. This means that L𝑐1

𝑡 ⊆ L𝑐1
𝑠 and L𝑐2

𝑡 ⊆ L𝑐2
𝑠 ,

as proven in Lemma 4.2. Since 𝑡𝑐1 ∈ L𝑐1
𝑡 and 𝑡𝑐2 ∈ L𝑐2

𝑡 by
definition, we also have that 𝑡𝑐1 ∈ L𝑐1

𝑠 and 𝑡𝑐2 ∈ L𝑐2
𝑠 . This

means that the Ineq. in 8 involving 𝑏′𝑐𝑡𝑐 remains true as is and
for the other two we have 𝑏𝑐1𝑡𝑐1 + 𝛿 > max{𝑏𝑐1𝑡𝑐 + 𝛿, 𝑏

𝑐1
𝑡𝑐2 } and

𝑏𝑐2𝑡𝑐2 + 𝛿 > max{𝑏𝑐2𝑡𝑐 + 𝛿, 𝑏
𝑐2
𝑡𝑐2 }. Note that only one of 𝑏𝑐1𝑡𝑐 , 𝑏

𝑐2
𝑡𝑐

is increased by 𝛿 , making one of these two inequalities even
stronger.

(3) In case every vertex is in a different dual region, we have
𝑠 = 𝑡 and for every 𝑐 ∈ {0, 1, 2}, 𝑡𝑐 ∈ L𝑐

𝑠 by definition. Then,
according to Eq. (9), only 𝑏′0

𝑡0
, 𝑏′1

𝑡1
, 𝑏′2

𝑡2
change. So, the three in-

equalities in ineqs. (8) give us 𝑏𝑐𝑡𝑐 +𝛿 > 𝑏𝑐𝑡𝑐 > max{𝑏𝑐𝑡𝑐1 , 𝑏𝑐𝑡𝑐2 },
where 𝑐1, 𝑐2 are always the labels complementary to 𝑐 . This,
again, proves that 𝑡 remains fully extended. □

Newly flipped triangles. Notice that in the case that 𝑡 ⊆ L𝑐
𝑠 for

some label 𝑐 ∈ {0, 1, 2}, the sign of the area of 𝑡 does not change, no
matter if it is fully extended or not. Intuitively, if 𝑡 is fully inside

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Efficient Embeddings in Exact Arithmetic • 1:11

the 𝑐 labeled dual area, the transformation just shifts it towards
𝑣𝑐 , without affecting its area. Rigorously, this can be proven, by
noticing that such a transformation adds a constant 𝛿 to every entry
of the 𝑐-row of the matrix (b𝑖 , b𝑗 , b𝑘) and this new matrix has the
same determinant as the original. Thus, it is true that newly flipped
triangles can only be found on the borders of the three dual areas,
i.e. on the three dual paths from 𝑠 to the outer face.

Fixing mapping into embedding. We now have the necessary in-
sights to see that increasing the weights of a triangle 𝑡 ∈ T will
eventually fully extend (Proposition 5.2) and so 𝑡 is going to eventu-
ally have positive area (Lemma 5.1). Once this state is achieved, 𝑡 will
stay fully extended, even if we increase the weights of other triangles
(Proposition 5.3). This suggest different strategies for adjusting the
weights in order to ’fix’ a planar triangulation with flipped triangles.
We consider the following main strategy: increase the weights of all
flipped triangles to unflip them, then recompute the coordinates and
find the new flipped ones. The algorithm is listed in Algorithm 3.
For this, we implemented two strategy of increasing the weights. In
the first, we fully extend a flipped triangle so that no further check
of its area is necessary and in the second we increase the weight
of a flipped triangle by the smallest amount needed to unflip this
triangle.

Fully Extend Strategy. As we know that once 𝑡 ∈ T is fully ex-
tended, 𝑡 has positive area, even if weights of other triangles are
increased later. Therefore we can choose 𝛿 for a flipped triangle 𝑡 to
be

𝛿 = 1 +max


max{𝑏0

𝑡1
, 𝑏0

𝑡2
} − 𝑏0

𝑡0
,

max{𝑏1
𝑡0
, 𝑏1

𝑡2
} − 𝑏1

𝑡1
,

max{𝑏2
𝑡0
, 𝑏2

𝑡1
} − 𝑏2

𝑡2

 . (12)

This means we only have to adjust the weight of each triangle at
most once.

Unflip Strategy. By using a step 𝛿 as in Eq. (12), we are “over-
correcting”. Whilst it is the case that fully extended triangles have
positive area, being fully extended is not a necessary condition. This
means we could in fact choose a more conservative step that still
guarantees that 𝑡 gets unflipped in the new coordinates, but does
not guarantee that the area of 𝑡 will stay positive if we increase the
weight of other triangles afterwards. We can use Eq. (7) to calculate
the smallest possible 𝛿 > 0 that makes the area of 𝑡 positive, by
solving the following inequality:

det
[
𝑏0
𝑡0
− 𝑏0

𝑡2
+ 𝛿 𝑏0

𝑡1
− 𝑏0

𝑡2

𝑏1
𝑡0
− 𝑏1

𝑡2
𝑏1
𝑡1
− 𝑏1

𝑡2
+ 𝛿

]
> 0. (13)

This gives 𝛿 > 1
2 (
√
tr2𝐴 − 4 det𝐴 − tr𝐴), where 𝐴 is the same 2× 2

matrix, before applying the transformation (so for 𝛿 = 0). So, we
can choose

𝛿 =

⌊
1
2

(√︁
tr2𝐴 − 4 det𝐴 − tr𝐴

)
+ 1

⌋
. (14)

ALGORITHM 3: Fixing mapping into embedding
Input :b ∈ B
Output :b′ ∈ B
w := 𝑀−1b // Compute weights.

𝑏′ := 𝑏

𝑄 := find_all_flipped_triangles()

while𝑄 ≠ ∅ do
for 𝑡 ∈ 𝑄 do

w = w + compute_step(t)𝑒𝑡
end
b′ = 𝑀w // Update coordinates.
𝑄 = find_all_flipped_triangles()

end

Function find_all_flipped_triangles()
𝑄 := ∅
for 𝑡 ∈ T do

/* We assume that the vertices of 𝑡 are saved in

the positive cyclic orientation */

{𝑖, 𝑗, 𝑘 } := 𝑡

if det(b𝑖 , b𝑗 , b𝑘) ≤ 0 then // If 𝑡 is flipped.
𝑄 = 𝑄 ∪ {𝑡 }

end
end
return𝑄

end

Function compute_step_fully_extend(𝑡 ∈ T)

return 𝛿 = 1 +max


max{𝑏0

𝑡1 , 𝑏
0
𝑡2 } − 𝑏

0
𝑡0 ,

max{𝑏1
𝑡0 , 𝑏

1
𝑡2 } − 𝑏

1
𝑡1 ,

max{𝑏2
𝑡0 , 𝑏

2
𝑡1 } − 𝑏

2
𝑡2


end

Function compute_step_unflip(𝑡 ∈ T)
return

⌊
1
2

(√
tr2𝐴 − 4 det𝐴 − tr𝐴

)
+ 1

⌋
end

6 IMPLEMENTATION DETAILS
We implemented E3A in C++ using Eigen [Guennebaud et al. 2010]
and Libigl [Jacobson et al. 2018]. The resulting tools have two re-
strictions: (1) the graph of the triangulations needs to be not only
planar, but maximal, meaning the outer face is a triangle with ex-
actly three boundary vertices; (2) if we want to start from a given
planar triangulation, the coordinates have to be integers. In the
following we explain how we address these restrictions; in addition,
we explain the generation of the Schnyder labeling.

6.1 Boundary with more than three vertices
First note that any triangulated topological sphere satisfies the com-
binatorial requirement if we remove any triangle, i.e., identify it as
the boundary. In case we want to use Schnyder’s method on any
mesh with disk-topology, we need to enclose the boundary with a
triangle and then connect the triangle to the boundary. This can be
done by connecting each inserted vertex with 1

3 of the boundary
(see Section 7.1 for an experiment with this approach). If we want to

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:12 • Ugo Finnendahl, Dimitrios Bogiokas, Pablo Robles Cervantes, and Marc Alexa

Fig. 12. The Hele-Shaw mesh [Shen et al. 2019] embedded in a square
boundary using Tutte’s method and then padded using Triangle [Shewchuk
1996] (left). The flipped triangles are fixed using E3A. The original square
boundary is distorted in the resulting mesh as our method cannot constrain
vertex positions (right).

use E3A for fixing an already given planar triangulations and a more
complex boundary shape is given, the region between the outer tri-
angle and the given boundary can be triangulated [Shewchuk 1996].
As our method is not able to fix any interior vertex, the boundary
in the resulting mesh cannot be prescribed, similar to methods that
determine the shape of the boundary as part of generating a pa-
rameterization [Lévy et al. 2002; Liu et al. 2008; Smith and Schaefer
2015]. It is worth noting that these methods do this intentionally to
minimize distortion, the artifact observed in the proposed method
is merely a byproduct. Using a naive padding strategy, the resulting
boundary geometry may appear undesirable, see Fig. 12.

6.2 Using integers for the coordinates
For turning a given planar triangulation into a set of weights, the
coordinates have to be integers. We first normalize coordinates so
that they are all contained in [0, 1]2. Then each coordinate is multi-
plied with a fixed quantization factor 2𝑟 and rounded to the nearest
integer. We call the integer 𝑟 the resolution and compare among
different choices in applications that depend on the resolution.
For possibly transferring the results of our tools to downstream

applications we likely need to convert back to floating point num-
bers. We ensure no rounding errors by setting the resulting 𝑥 = 𝑏0

and 𝑦 = 𝑏1 and then divide them by the smallest power of 2 that
is larger than 𝑏0 + 𝑏1 + 𝑏2. This ensures that that all vertices are
embedded within [0, 1]2. The IEEE754 double format has 53 Bits
for storing the mantissa, implying that an embedding can be trans-
formed losslessly as long as the sum of weights is below 253 (we
could further gain some space by also exploiting the sign).

6.3 Generating a Schnyder labeling
The presented method works with any Schnyder labeling, and we
could use any of the published algorithms [Brehm 2000; Schnyder
1990] to generate a labeling in linear time. In our implementation
we adopted the method of Brehm [2000]. Instead of constructing
the labels starting from one corner of the outer triangle, we start
from all three corners at the same time. Context for the following
brief explanation may be found in Brehm [2000, Sec. 4.2].
The algorithm of Brehm [2000] selects a key-label, e.g. 0, and

forms a ‘frontier’ initialized with the three boundary vertices. The

𝑣0𝑣1

𝑣2

𝑣0𝑣1

𝑣2

Fig. 13. The labeling algorithm is initialized with the three vertices at the
boundary, giving them their respective color. They form a ‘frontier’ (dashed
line). In each step one of the vertices on the frontier gets processed. This
process involves labeling incident unlabeled triangles. Every neighboring
vertex that has not yet been visited gets added to the boundary and inherits
the color of the processed vertex. Left image shows the process after one
step, right image after three steps.

algorithm then, one by one, processes the vertices on the ‘fron-
tier’ by removing them from that boundary, adding every non-
processed neighbouring vertex to that boundary, while labeling
all non-processed triangles such that each corner incident to the
current vertex gets labeled with the key label. To prove that this
algorithm terminates and results in a valid Schnyder labeling, one
needs to show that neither the two non-key color boundary vertices
{𝑣1, 𝑣2} get processed nor any vertex that currently has more than
two neighbours on the ‘frontier’.
Although Brehm [2000] showed that this algorithm is able to

generate every possible Schnyder labeling, in practice we have
observed that the resulting primary trees are unbalanced, no matter
what heuristic is being used to select the next vertex. We therefore
extend this method by processing 𝑣1 and 𝑣2 at the same time. Instead
of working with a key label, we label vertices on the ‘frontier’,
initializing each boundary vertex {𝑣0, 𝑣1, 𝑣2} with their respective
label. When we process a vertex, we label the unlabeled triangles
such that the corners incident to the current vertex get the label of
the current vertex and color each unlabeled vertex, which is then a
new vertex on the ‘frontier’, with the label of the current vertex. This
mimics the extension with this label as key label of the algorithm
of Brehm [2000]. We have depicted a possible first and third step of
the algorithm in Fig. 13.
As the algorithm processes vertices from all directions using

different labels for the extension, some vertices could get processed
further using two different labels. Our algorithm implicitly picks a
random one (the label that reached that vertex first). This means
it is possible that a label vanishes from the ‘frontier’. In this case
we relabel a vertex on the ‘frontier’ that can get processed using
two different labels. We believe this algorithm can be proved to
generate a valid Schnyder labeling, however, leave this for future
work. In practice we did not encounter a single failure case in our
experiments and could, in any case, fall back to the algorithm by
Brehm [2000] if problems were ever encountered.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Efficient Embeddings in Exact Arithmetic • 1:13

Fig. 14. Comparison of the the two resulting embeddings of themesh #40261
from Thingi10K [Zhou and Jacobson 2016]. Tutte embedding (left) Schnyder
embedding (right).

Fig. 15. Comparison of the times of Schnyder and Tutte embeddings in a
log-log plot. Each marked time is the average of three runs on an Intel(R)
Core(TM) i7-4770K. Our method is an order of magnitude faster.

7 RESULTS AND EVALUATION
In the followingwe evaluate the E3A tools and compare them against
alternatives. First we use Tutte embeddings as well as Schnyder
realizations as a starting point for the minimization of symmet-
ric Dirichlet energy and compare the outcomes. For fixing planar
realizations with flipped triangles we first evaluate different strate-
gies for our method, followed by a comparison to both Schnyder’s
method and Progressive Embedding. If not stated otherwise we ran
our experiments on an Intel® Core™ i9-12900K with 32 GB of RAM.

7.1 Comparison to Tutte embeddings
Using just the connectivity of the mesh, we can create a Schny-
der labeling and choose an arbitrary weight vector w to create an
embedding in linear time. As Tutte embeddings also just need the
adjacency matrix we compare these two methods for creating an
arbitrary embedding. Note that these embeddings look completely
different as can be seen in Fig. 14. In the Tutte embedding case the
majority of vertices cluster in a very small region. Schnyder embed-
dings usually results in triangles with small shortest-to-largest edge
ratios.

Runtime. We compared the runtime of Tutte’s and Schnyder’s
method on different meshes sizes. As input we sampled random

Fig. 16. Comparison of the parametrizations resulting from optimizing the
symmetric Dirichlet energy starting from Tutte (yellow) or Schyder (blue)
embeddings. The right case is more common, where Schnyder embedding
does better than Tutte embedding.

points within [0, 1]2 and calculated the Delaunay triangulation. We
then enclosed them with a triangle as described above. and ran both
methods on the resulting maximal planar graph.

Tutte’s method needs to solve a sparse linear system of equations,
which we implemented using CHOLMOD [Chen et al. 2008]. This
leads to nearly linear runtimes. Nevertheless, our method is roughly
10 times faster. This is illustrated in the log-log plot in Fig. 15.

Input for symmetric Dirichlet optimization. Tutte embeddings are
often used as input for parametrization optimization methods, as
they are fast and simple to compute. The classical Schnyder em-
beddings are faster to compute, so it might be worth considering
Schnyder embeddings as input for further optimization. To test this,
we selected 2244 closed meshes with genus 0 from Thingi10K [Zhou
and Jacobson 2016], making sure that all faces had non-zero area.
Then we generated boundaries by either selecting a random triangle
in the mesh, or using a cut-graph as described by Bommes et al.
[2009] and implemented in libigl [Jacobson et al. 2018]. The bound-
aries were laid out on circle for Tutte’s method or combinatorially
connected to a triangle for boundaries with more than 3 vertices
for Schnyder’s method. In 243 + 18 of these meshes, Tutte’s method
failed to produce a usable mesh. Among them are the reported [Shen
et al. 2019] 80 meshes with flipped triangles. We then optimized all
usable meshes based on symmetric Dirichlet energy with an imple-
mentation using TinyAD [Schmidt et al. 2022]. We stopped the opti-
mization after convergence or 1000 iterations. Schnyder’s method
converged in over 92% of the cases, while Tutte’s method failed to
converge more often (85% / 65%, triangle / arbitrary boundaries).
Although the cost for the embedding step is negligible compared to
the optimization, Schnyder embedding was faster or as fast as Tutte
embedding in all except for three cases. After stopping, the initial
Schnyder embedding produced a lower symmetric Dirichlet energy
more often than Tutte’s method. For the convergence speed, we
took the higher of the two resulting energies and compared the time
after each energy has fallen below, in milliseconds. In this terms

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:14 • Ugo Finnendahl, Dimitrios Bogiokas, Pablo Robles Cervantes, and Marc Alexa

Table 1. Comparison between Schnyder embeddings and Tutte embed-
dings as input for symmetric Dirichlet parametrization optimization on
Thingi10K [Zhou and Jacobson 2016] meshes. The numbers tell how often
Schnyder’s or Tutte’s method perform better, for the two cases of using a
single triangle of a closed mesh or the existing boundary. The rows provide
information on how often the initial embedding failed, otherwise which
method was faster ; and for symmetric Dirichlet energy if minimization
converged, and which method was faster and resulted in smaller energy.

Triangle bdy Arbitrary bdy
Schnyder Same Tutte Schnyder Same Tutte

Failed 0 0 243 0 0 18
Faster emb. 1165 836 0 1185 1039 3
Converged 177 1673 37 756 1402 11
Faster opt. 1163 370 468 1442 523 262
Lower en. 740 646 615 1137 813 277

Schnyder’s method was faster on the majority of meshes. Numbers
are listed in Table 1. Two examples, for which one of the resulting
parametrizations is worse than the other is depicted in Fig. 16. On
the whole, Schnyder’s method is more robust than Tutte’s method
and worth considering as initial embedding.

7.2 Different Strategies for fixing embeddings
Our presentation of multiple strategies for fixing embeddings leads
to several possible combinations: Single and batch wise updates can
be combined with the unflip or fully extend update rule. These four
combinations can be run on different initial resolutions. For our
experiments we used three different resolutions 2𝑟 , namely 215, 230
and 250.

Runtime. For the single and the batch wise strategy, we used
𝑟 = 15, 30, 50 to compare the running times for both fully-extend
and unflip update rule. The results are presented in Fig. 17. These
two graphs indicate that the batch wise update strategy is usually
an order of magnitude faster than the single update strategy. Also,
for the batch-wise update strategy the resolution seems to affect
the running time, whereas for the single update strategy to a lesser
degree. Lastly, the fully-extend update rule seems to be slightly
faster than the unflip update rule.

Single vs. batch. For the energies, we fixed 𝑟 = 50 and the unflip
update rule. The results in Fig. 18 indicate that the single update
strategy usually results in a shape with better symmetric Dirichlet
and Tutte’s spring energy. This comes at the cost of run-time.

Fully extended vs. unflip. To compare between the unflip and the
fully-extend update rule, we fixed 𝑟 = 30 and batch wise updates.
The results regarding the running times and the energies are pre-
sented in Fig. 19 and Fig. 20 respectively. The results indicate that,
in general, the fully-extend update rule is faster and its Dirichlet
energy is better than the unflip update rule for higher resolutions.
On the other hand, the unflip update rule tends to have better Tutte’s
spring energy, especially for high resolutions.

1s

1m

10m

1h

5h

103 104 105 106

vertices

100

101

102

103

104

105

106

107

ti
m
e
[m

s]

all datasets, log-log

batch, A = 15

batch, A = 30

batch, A = 50

single, A = 15

single, A = 30

single, A = 50

Running time of E3A versions: fully-extend

1s

1m

10m

1h

5h

103 104 105 106

vertices

100

101

102

103

104

105

106

107

ti
m
e
[m

s]

all datasets, log-log

batch, A = 15

batch, A = 30

batch, A = 50

single, A = 15

single, A = 30

single, A = 50

Running time of E3A versions: unflip

Fig. 17. Run-time difference of single vs. batch-wise updates using the fully-
extend (left) and unflip strategy (right) with resolutions 𝑟 = 15, 30, 50. The
batch-wise approach is an order of magnitude faster and the fully-extend
strategy is just slightly faster than the unflip strategy.

103 104 105 106

vertices

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Δ
lg
�

sd
=
lg
�

sd
,b
−
lg
�

sd
,s

Sym. Dirichlet energy

�sd,b > �sd,s, single better, 71 times

�sd,b < �sd,s, batch better, 21 times

�sd,b = �sd,s, 4 times

103 104 105 106

vertices

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Δ
lg
�

tu
tt

e
=
lg
�

tu
tt

e,b
−
lg
�

tu
tt

e,s

Tutte’s energy

�tutte,b > �tutte,s, single better, 91 times

�tutte,b < �tutte,s, batch better, 1 time

�tutte,b = �tutte,s, 4 times

Energy (log-)differences of E3A versions: unflip, A = 50

Fig. 18. Comparison between the single and batch-wise update strategy
using the unflip update strategy and a resolution of 𝑟 = 50 of the symmetric
Dirichlet energy (left) and Tutte’s spring energy (right). The single update
seems to have a slight advantage.

103 104 105 106

vertices

0

1000

2000

3000

4000

5000

∆
t
=

t u
−
t f

e
[m

s]

all datasets, batch, r = 15

tu > tfe, fully-extend faster, 64 times

tu < tfe, unflip faster, 26 times

tu = tfe, 32 times

103 104 105 106

vertices

−20000

0

20000

40000

60000

80000

100000

all datasets, batch, r = 30

tu > tfe, fully-extend faster, 95 times

tu < tfe, unflip faster, 19 times

tu = tfe, 8 times

103 104 105 106

vertices

0

20000

40000

60000

80000

100000

all datasets, batch, r = 50

tu > tfe, fully-extend faster, 85 times

tu < tfe, unflip faster, 25 times

tu = tfe, 12 times

Running time difference in E3A strategies

Fig. 19. Run-time comparison of the unflip strategy and fully-extend strat-
egy using batch-wise updates using different resolutions 𝑟 = 15 (left), 𝑟 = 30
(mid) and 𝑟 = 50 (right). The fully-extend strategy is usually faster

7.3 Comparison to Progressive Embeddings
We compared our method for fixing broken Tutte embeddings
against Progressive Embedding [Shen et al. 2019]. In their work, the
authors identify 80 meshes from Thingi10k of genus 0 for which
Tutte’s method failed to produce a valid embedding. Besides count-
ing flipped faces, the authors used an additional energy as a measure
of face quality. The energy is defined as the symmetric Dirichlet
energy wrt. an equilateral of mean face area. They also define a
triangle as invalid if it is either flipped or its symmetric Dirichlet is
above the threshold of 1020. To provide a fair comparison between
our methods, we adopted the use of the symmetric Dirichlet as they
define it. In addition, we used a normalized version of Tutte’s spring

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Efficient Embeddings in Exact Arithmetic • 1:15

103 104 105 106

vertices

−4

−2

0

2

∆
lg

E
tu

tte
=

lg
E

tu
tte

,u
−

lg
E

tu
tte

,fe

all datasets, all versions, r = 15

Etutte,u > Etutte,fe, fully extend better, 230 times

Etutte,u < Etutte,fe, unflip better, 8 times

103 104 105 106

vertices

−6

−4

−2

0

2

4

6

all datasets, all versions, r = 30

Etutte,u > Etutte,fe, fully extend better, 202 times

Etutte,u < Etutte,fe, unflip better, 36 times

103 104 105 106

vertices

−10

−5

0

5

10

15

all datasets, all versions, r = 50

Etutte,u > Etutte,fe, fully extend better, 150 times

Etutte,u < Etutte,fe, unflip better, 80 times

Etutte,u = Etutte,fe, 8 times

Sym. Dirichlet energy difference (log) in E3A strategies

103 104 105 106

vertices

−25

−20

−15

−10

−5

0

5

10

∆
lg

E
sd
=

lg
E

sd
,u
−

lg
E

sd
,fe

all datasets, all versions, r = 15

Esd,u > Esd,fe, fully extend better, 85 times

Esd,u < Esd,fe, unflip better, 153 times

103 104 105 106

vertices

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

all datasets, all versions, r = 30

Esd,u > Esd,fe, fully extend better, 5 times

Esd,u < Esd,fe, unflip better, 233 times

103 104 105 106

vertices

−20

−15

−10

−5

0

5

10
all datasets, all versions, r = 50

Esd,u > Esd,fe, fully extend better, 11 times

Esd,u < Esd,fe, unflip better, 219 times

Esd,u = Esd,fe, 8 times

Tutte’s energy difference (log) in E3A strategies

Fig. 20. Energy comparison of the unflip strategy and fully-extend strategy
using batch-wise updates using different resolutions 𝑟 = 15 (left), 𝑟 = 30
(mid) and 𝑟 = 50 (right). The fully extend strategy seems to perform slightly
better for the Symmetric Dirichlet energy (top) while the unflip energy has
usually a lower Tutte’s spring energy (bottom).

1s

1m

10m

1h

5h

103 104 105 106

vertices

100

101

102

103

104

105

106

107

ti
m
e
[m

s]

1–4 subdivision, log-log

E3A, batch, unflip, A = 15

E3A, batch, unflip, A = 50

E3A, single, unflip, A = 15

E3A, single, unflip, A = 50

Schnyder

PE

PE failure

Running time of select fixing methods

Fig. 21. Runtime comparison between E3A unflip strategy with resolutions
15 and 50 and Progressive Embedding for the different face refinement
iterations with up to 3.9 million vertices. Progressive Embedding finished
all but the largest case, but did not provide a fixed embedding (shown with
an X) starting from around 60 thousand vertices. It might be possible that
this is one of the cases discussed by the authors where a solution cannot be
guaranteed by their algorithm. In contrast, E3A produced a fixed embedding
in all cases with the worst running times staying in the order of minutes.

energy, defined as the summed squared norm of the mean distance
of a vertex to its neighbors, divided by the total edge length.

We ran our method against all 80 meshes and compare for each of
them whether a fixed embedding was produced, their running time,
their maximum symmetric Dirichlet out of all faces for each em-
bedding and their normalized Tutte’s spring energy; the results can
be seen in Fig. 22. Both Progressive Embedding and E3A managed
to produce a fixed embedding for all 80 meshes, but E3A showed a

1s

1m

10m

1h

5h

103 104

vertices

100

101

102

103

104

105

106

107

ti
m
e
[m

s]

80 problematic Thingi10k meshes, log-log

E3A, batch, unflip, A = 15

E3A, batch, unflip, A = 50

E3A, single, unflip, A = 15

E3A, single, unflip, A = 50

Schnyder

PE

Running time of select fixing methods

103 104

vertices

200

0

200

400

600

800

1000

1200

t
[m

s]

80 Thingi10k meshes, unflip - fully extend, 50

t > 0, fully extend faster
t < 0, unflip faster

Runtime difference: fully extend vs unflip

Fig. 22. Runtime comparison between Progressive Embedding [Shen et al.
2019] and E3A unflip strategy with resolutions 15 and 50 for all 80
Thingi10k [Zhou and Jacobson 2016] meshes of genus 0 that break Tutte’s
method (top) and runtime difference between unflip and fully extend strat-
egy where Δ𝑡 = 𝑡u − 𝑡fe (bottom).

speedup of up to 1000× for both strategies. For the defined energies,
we noticed that different discretization resolutions yielded vastly
different symmetric Dirichlet energies, with lower resolutions re-
sulting in lower values, around those of Progressive Embedding;
and higher resolutions resulting higher values, above Progressive
Embedding’s threshold. This likely comes from the fact that our
strategy only increases the weights by 1 above the minimal needed
weight to flip an triangle. This increase of 1 has less impact in higher
resolutions, which leads to triangles with small area and therefore
acute angles. Nevertheless, we argue that Tutte’s spring energy
normalized better represents the distortion of each method with
respect to an ideally fixed Tutte embedding. In this case, we noticed
that an E3A resolution of 50 was able to produce better results that
Progressive Embedding in most cases. The resulting energies can
be seen in Fig. 23.
To test our method against larger meshes, we took a subset of

three small meshes with 193, 963, and 3785 vertices respectively
and subdivided their faces with a 1-4 ratio to produce larger meshes
which would ideally also break resulting Tutte embeddings. Indeed,
we found that the number of flipped triangles produced by Tutte’s
algorithm roughly corresponded with the scaled total number of
faces. This way, we created meshes of up to 3.9 million vertices and

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:16 • Ugo Finnendahl, Dimitrios Bogiokas, Pablo Robles Cervantes, and Marc Alexa

103 104

vertices

108

1012

1016

1020

1024

1028

1032

1036

�
m

sd

PE threshold

80 problematic Thingi10k meshes, log-log

E3A, batch, unflip, A = 15

E3A, batch, unflip, A = 30

E3A, batch, unflip, A = 50

PE

Max. sym. Dirichlet energy wrt. equilateral triangle

103 104

vertices

10−25

10−21

10−17

10−13

10−9

10−5

10−1

�
tu

tt
e

80 problematic Thingi10k meshes, log-log

E3A, batch, unflip, A = 15

E3A, batch, unflip, A = 30

E3A, batch, unflip, A = 50

PE

Tutte’s energy

Fig. 23. Comparison of E3A with different starting resolutions and Progres-
sive Embedding [Shen et al. 2019]. On the top we compare their measure
of energy (the threshold is marked with a grey line). On the bottom we
show Tutte’s spring energy. Depending on the starting resolution we can
get similar or better results.

ran Progressive Embedding and E3A to fix them. The results can be
seen in Fig. 21. Ourmethodwas able to fix all of them, takingminutes
to fix the most demanding mesh, whereas Progressive Embedding
failed to produce an embedding after more than 8 hours. More
generally, we found that Progressive Embedding failed to produce a
fixed embedding starting at sizes of tens of thousands of vertices.

8 DISCUSSION
We develop a set of tools based on Schnyder labeling and realizers,
exploiting the use of weights per triangle. All algorithms run in lin-
ear time, are efficient, and can be implemented in integer arithmetic.
The particular progress over existing methods based on Schnyder
[1990] lies in algorithms that start with existing realizations and
modify them to remove flipped triangles. This introduces a small

overhead compared to just embedding the triangulation, it allows
preserving existing geometry and is still orders of magnitude faster
than existing approaches that are also guaranteed to be exact.

While one may argue that any algorithm will in some way be lim-
ited by the number of bits used for the representation of coordinates,
our tools degrade more gracefully: the size of the representation
may affect the shape of the triangles, but it has no effect on the
guarantees provided by the algorithms and effects time complexity
only by the unavoidable constant factor. This is in contrast to all
algorithms working in double we are aware of, which degrade by
failing to provide an embedding.

Limitations. The single most significant limitation of our current
implementation is the restriction to a triangular boundary. While
we can embed more complex boundaries into the triangle, we can-
not guarantee that the positions of the vertices on the boundary
are preserved. Depending on the application this may or may not
be acceptable. One may argue that fixing arbitrary vertices in an
embedding may not always be possible without changing the com-
binatorics. It would still be desirable to provide solutions in case an
embedding is possible. We consider further investigation into point
constraints important future work.

A more natural limitation, related to the size of integers, follows
from the fixing strategy. As the weights are increased, the sum of
weights increases, and it cannot be guaranteed that the sum fits
into a desired output format, such as the 53 bits offered by IEEE 754
double format.

Possible optimizations. Although our method is already quite fast,
there are several optimizations in the data structures that are still
possible. For example, it would be possible to avoid recomputing
the area of triangles that have been fixed and are known not to
be affected by changing the weights of others based on the tree
structures.
We also did not make use of the space afforded by different

weights for the initial embedding or the different Schnyder labelings.
Both have significant effect on the generated embedding.

9 ACKNOWLEDGEMENTS
Early results of this work were presented at the Workshop on Ro-
bust Geometric Algorithms for Computational Fabrication hosted
and supported by the Fields Institute. The ensuing discussions, in
particular with Ilya Baran and Daniele Panozzo, have inspired the
further development reported here. We also greaftfully acknowledge
the many helpful comments of the anonymous reviewers. Funded,
in part, by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy–The
Berlin Mathematics Research Center MATH+ (EXC-2046/1, project
ID: 390685689); and by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation pro-
gramme (Grant agreement No. 101055448, ERC Advanced Grand
EMERGE).

REFERENCES
Martin Aigner and Gnter M. Ziegler. 2009. Proofs from THE BOOK (4th ed.). Springer

Publishing Company, Incorporated.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Efficient Embeddings in Exact Arithmetic • 1:17

Luca Castelli Aleardi, Éric Fusy, and Thomas Lewiner. 2009. Schnyder Woods for
Higher Genus Triangulated Surfaces, with Applications to Encoding. Discrete &
Computational Geometry 42, 3 (01 Oct 2009), 489–516. https://doi.org/10.1007/
s00454-009-9169-z

Fidel Barrera-Cruz, Penny Haxell, and Anna Lubiw. 2014. Morphing Schnyder Draw-
ings of Planar Triangulations. In Graph Drawing, Christian Duncan and Antonios
Symvonis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 294–305.

Fidel Barrera-Cruz, Penny Haxell, and Anna Lubiw. 2019. Morphing Schnyder Drawings
of Planar Triangulations. Discrete & Computational Geometry 61, 1 (01 Jan 2019),
161–184. https://doi.org/10.1007/s00454-018-0018-9

Giuseppe Di Battista, Roberto Tamassia, and Luca Vismara. 1999. Output-Sensitive
Reporting of Disjoint Paths. Algorithmica 23, 4 (01 Apr 1999), 302–340. https:
//doi.org/10.1007/PL00009264

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-Integer Quadrangulation.
ACM Trans. Graph. 28, 3, Article 77 (jul 2009), 10 pages. https://doi.org/10.1145/
1531326.1531383

Nicolas Bonichon, Stefan Felsner, and Mohamed Mosbah. 2007. Convex Drawings
of 3-Connected Plane Graphs. Algorithmica 47, 4 (01 Apr 2007), 399–420. https:
//doi.org/10.1007/s00453-006-0177-6

Enno Brehm. 2000. 3-orientations and Schnyder 3-tree-decompositions. Master’s thesis.
FB Mathematik und Informatik, Freie Universität Berlin.

Hervé Brönnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael Hoffmann,
Lutz Kettner, Sylvain Pion, and Stefan Schirra. 2023. 2D and 3D Linear Geometry
Kernel. In CGAL User and Reference Manual (5.5.2 ed.). CGAL Editorial Board.
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgKernel23

Marcel Campen, Cláudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial
Foliations. ACM Trans. Graph. 35, 4, Article 74 (jul 2016), 15 pages. https://doi.org/
10.1145/2897824.2925890

Luca Castelli Aleardi. 2019. Balanced Schnyder Woods for Planar Triangulations: An
Experimental Study with Applications to Graph Drawing and Graph Separators. In
Graph Drawing and Network Visualization, Daniel Archambault and Csaba D. Tóth
(Eds.). Springer International Publishing, Cham, 114–121.

Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and
Update/Downdate. ACM Trans. Math. Softw. 35, 3, Article 22 (oct 2008), 14 pages.
https://doi.org/10.1145/1391989.1391995

Marek Chrobak and Goos Kant. 1997. Convex Grid Drawings of 3-Connected Planar
Graphs. Int. J. Comput. Geom. Appl. 7 (1997), 211–223.

Marek Chrobak and Thomas H. Payne. 1995. A linear-time algorithm for drawing a
planar graph on a grid. Inform. Process. Lett. 54, 4 (1995), 241–246. https://doi.org/
10.1016/0020-0190(95)00020-D

Hubert De Fraysseix, János Pach, and Richard Pollack. 1990. How to draw a planar
graph on a grid. Combinatorica 10, 1 (01 Mar 1990), 41–51. https://doi.org/10.1007/
BF02122694

Raghavan Dhandapani. 2010. Greedy Drawings of Triangulations. Discrete Comput.
Geom. 43, 2 (mar 2010), 375–392.

Xingyi Du, Noam Aigerman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Danny M.
Kaufman, and Tao Ju. 2020. Lifting Simplices to Find Injectivity. ACM Trans. Graph.
39, 4, Article 120 (aug 2020), 17 pages. https://doi.org/10.1145/3386569.3392484

Xingyi Du, Danny M. Kaufman, Qingnan Zhou, Shahar Kovalsky, Yajie Yan, Noam
Aigerman, and Tao Ju. 2022. Isometric Energies for Recovering Injectivity in Con-
strained Mapping. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of
Korea) (SA ’22). Association for Computing Machinery, New York, NY, USA, Article
36, 9 pages. https://doi.org/10.1145/3550469.3555419

Stefan Felsner. 2001. Convex Drawings of Planar Graphs and the Order Dimen-
sion of 3-Polytopes. Order 18, 1 (01 Mar 2001), 19–37. https://doi.org/10.1023/A:
1010604726900

Stefan Felsner and Florian Zickfeld. 2008. Schnyder Woods and Orthogonal Surfaces.
Discrete & Computational Geometry 40, 1 (01 Jul 2008), 103–126. https://doi.org/10.
1007/s00454-007-9027-9

Michael S. Floater and Kai Hormann. 2005. Surface Parameterization: a Tutorial and
Survey. In Advances in Multiresolution for Geometric Modelling, Neil A. Dodgson,
Michael S. Floater, and Malcolm A. Sabin (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 157–186.

Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas
Ray, and Dmitry Sokolov. 2021. Foldover-Free Maps in 50 Lines of Code. ACM Trans.
Graph. 40, 4, Article 102 (jul 2021), 16 pages. https://doi.org/10.1145/3450626.3459847

Torbjörn Granlund et al. 2020. GNU MP: The GNU Multiple Precision Arithmetic Library
(6.2.1 ed.). https://gmplib.org/

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Xin He and Huaming Zhang. 2010. Schnyder Greedy Routing Algorithm. In Theory

and Applications of Models of Computation, Jan Kratochvíl, Angsheng Li, Jivrí Fiala,
and Petr Kolman (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 271–283.

Christoph Martin Hoffmann. 1989. The problems of accuracy and robustness in geo-
metric computation. Computer 22, 3 (1989), 31–39. https://doi.org/10.1109/2.16223

Fáry István. 1948. On straight-line representation of planar graphs. Acta scientiarum
mathematicarum 11, 229-233 (1948), 2.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Goos Kant. 1996. Drawing planar graphs using the canonical ordering. Algorithmica
16, 1 (01 Jul 1996), 4–32. https://doi.org/10.1007/BF02086606

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3
(jul 2002), 362–371. https://doi.org/10.1145/566654.566590

Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM
Trans. Graph. 31, 4, Article 108 (jul 2012), 13 pages. https://doi.org/10.1145/2185520.
2185604

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2008. A Lo-
cal/Global Approach to Mesh Parameterization. In Proceedings of the Symposium on
Geometry Processing (Copenhagen, Denmark) (SGP ’08). Eurographics Association,
Goslar, DEU, 1495–1504.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 4, Article 37a (jul 2017),
16 pages. https://doi.org/10.1145/3072959.2983621

Rohan Sawhney and Keenan Crane. 2017. Boundary First Flattening. ACM Trans. Graph.
37, 1, Article 5 (dec 2017), 14 pages. https://doi.org/10.1145/3132705

Stefan Schirra. 2000. Robustness and Precision Issues in Geometric Computation. In
Handbook of Computational Geometry, Jörg-Rüdiger Sack and Jorge Urrutia (Eds.).
Elsevier, Amsterdam, The Netherlands, 597–632.

Patrick Schmidt, Janis Born, David Bommes, Marcel Campen, and Leif Kobbelt. 2022.
TinyAD: Automatic Differentiation in Geometry Processing Made Simple. Computer
Graphics Forum 41, 5 (2022), 113–124. https://doi.org/10.1111/cgf.14607

Walter Schnyder. 1989. Planar graphs and poset dimension. Order 5, 4 (01 Dec 1989),
323–343. https://doi.org/10.1007/BF00353652

Walter Schnyder. 1990. Embedding Planar Graphs on the Grid. In Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, California,
USA) (SODA ’90). Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 138–148.

Walter Schnyder andWilliam Thomas Trotter. 1992. Convex embeddings of 3-connected
plane graphs. Abstracts of the AMS 13 (1992), 502.

Alla Sheffer, Emil Praun, and Kenneth Rose. 2007. Mesh Parameterization Methods and
Their Applications. Foundations and Trends® in Computer Graphics and Vision 2, 2
(2007), 105–171. https://doi.org/10.1561/0600000011

Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo. 2019. Progressive
Embedding. ACM Trans. Graph. 38, 4, Article 32 (jul 2019), 13 pages. https://doi.
org/10.1145/3306346.3323012

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator. In Applied Computational Geometry Towards Geometric
Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 203–222.

Jonathan Richard Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and
Fast Robust Geometric Predicates. Discrete & Computational Geometry 18, 3 (1997),
305–363. https://doi.org/10.1007/PL00009321

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. 41, 2, Article 11 (feb 2015), 36 pages. https://doi.org/10.1145/
2629697

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4, Article 70 (jul 2015), 9 pages. https://doi.org/10.1145/
2766947

Sherman Kopald Stein. 1951. Convex Maps. Proc. Amer. Math. Soc. 2, 3 (1951), 464–466.
Jian-Ping Su, Chunyang Ye, Ligang Liu, and Xiao-Ming Fu. 2020. Efficient Bijective

Parameterizations. ACM Trans. Graph. 39, 4, Article 111 (aug 2020), 8 pages. https:
//doi.org/10.1145/3386569.3392435

William Thomas Tutte. 1960. Convex Representations of Graphs. Proceedings of the
London Mathematical Society s3-10, 1 (1960), 304–320. https://doi.org/10.1112/plms/
s3-10.1.304

William Thomas Tutte. 1963. How to Draw a Graph. Proceedings of the London
Mathematical Society s3-13, 1 (1963), 743–767. https://doi.org/10.1112/plms/s3-
13.1.743

Klaus Wagner. 1936. Bemerkungen zum vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung 46 (1936), 26–32.

Chee-Keng Yap. 1997. Towards exact geometric computation. Computational Geometry
7, 1 (1997), 3–23. https://doi.org/10.1016/0925-7721(95)00040-2

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1007/s00454-009-9169-z
https://doi.org/10.1007/s00454-009-9169-z
https://doi.org/10.1007/s00454-018-0018-9
https://doi.org/10.1007/PL00009264
https://doi.org/10.1007/PL00009264
https://doi.org/10.1145/1531326.1531383
https://doi.org/10.1145/1531326.1531383
https://doi.org/10.1007/s00453-006-0177-6
https://doi.org/10.1007/s00453-006-0177-6
https://doc.cgal.org/5.5.2/Manual/packages.html#PkgKernel23
https://doi.org/10.1145/2897824.2925890
https://doi.org/10.1145/2897824.2925890
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1016/0020-0190(95)00020-D
https://doi.org/10.1016/0020-0190(95)00020-D
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/BF02122694
https://doi.org/10.1145/3386569.3392484
https://doi.org/10.1145/3550469.3555419
https://doi.org/10.1023/A:1010604726900
https://doi.org/10.1023/A:1010604726900
https://doi.org/10.1007/s00454-007-9027-9
https://doi.org/10.1007/s00454-007-9027-9
https://doi.org/10.1145/3450626.3459847
https://gmplib.org/
https://doi.org/10.1109/2.16223
https://doi.org/10.1007/BF02086606
https://doi.org/10.1145/566654.566590
https://doi.org/10.1145/2185520.2185604
https://doi.org/10.1145/2185520.2185604
https://doi.org/10.1145/3072959.2983621
https://doi.org/10.1145/3132705
https://doi.org/10.1111/cgf.14607
https://doi.org/10.1007/BF00353652
https://doi.org/10.1561/0600000011
https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1007/PL00009321
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2766947
https://doi.org/10.1145/2766947
https://doi.org/10.1145/3386569.3392435
https://doi.org/10.1145/3386569.3392435
https://doi.org/10.1112/plms/s3-10.1.304
https://doi.org/10.1112/plms/s3-10.1.304
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1016/0925-7721(95)00040-2

	Abstract
	1 Introduction
	2 Background
	2.1 Schnyder Labeling
	2.2 Schnyder Realization
	2.3 Primal Trees and regions
	2.4 Barycentric coordinates and Weights

	3 Related Work
	4 Construction
	4.1 Dual binary trees and dual edge labeling
	4.2 Forward - From weights to barycentric coordinates
	4.3 Backward - From barycentric coordinates to weights

	5 Generating embeddings
	6 Implementation Details
	6.1 Boundary with more than three vertices
	6.2 Using integers for the coordinates
	6.3 Generating a Schnyder labeling

	7 Results and Evaluation
	7.1 Comparison to Tutte embeddings
	7.2 Different Strategies for fixing embeddings
	7.3 Comparison to Progressive Embeddings

	8 Discussion
	9 Acknowledgements
	References

