ARAP Revisited

Discretizing the Elastic Energy
using Intrinsic Voronoi Cells

Ugo Finnendahl, Matthias Schwartz, Marc Alexa

ARAP Revisited

ARAP Revisited

$$\f\colon S\subset\R^3\to\R^3$$
$$E(\f) = \htmlData{fragment-index=2}{\frac{1}{2}\int_{S}} \htmlData{fragment-index=5}{\min_{R\in\text{SO(3)}}} \htmlData{fragment-index=5}{\lVert J_\f - R \rVert^2} \htmlData{fragment-index=2}{dS}$$ $$E(\f,R) = \frac{1}{2}\int_{S} \lVert J_\f - R \rVert^2 dS$$
$\min E(\f)$     $\text{s.t. } \f(\mathbf{x}) = \htmlStyle{color: orange;}{\mathbf{b}_{\mathbf{x}}}$
$\forall \mathbf{x}\in \text{constrained set}$
$\min E(\f,R)$     $\text{s.t. } \f(\mathbf{x}) = \htmlStyle{color: orange;}{\mathbb{b}_{\mathbf{x}}}$
$\forall \mathbf{x}\in \text{constrained set}$
$$\f$$ $$S$$ $$\tilde{S}$$

Discretizing ARAP

$$\f\colon S\subset\R^3\to\R^3$$ $$\f\colon M\subset\R^3\to\R^3$$
$$\frac{1}{2}\int_{S} \lVert J_\f - R \rVert^2 dS \phantom{ = \frac{1}{2}\sum_{t\in T}\int_{M} \lVert J_\f - R \rVert^2 dM}$$
$$\frac{1}{2}\int_{M} \lVert J_\f - R \rVert^2 dM \htmlData{fragment-index=3}{ = \frac{1}{2}\sum_{t\in T}\int_{t} \lVert J_\f - R \rVert^2 dt}$$
$$\htmlData{fragment-index=14}{E(\f,R)}\htmlData{fragment-index=4}{\overset{\htmlData{fragment-index=14,class=fade-out}{\text{[PP93]}}}{=}} \htmlData{fragment-index=5}{\frac{1}{4}\sum_{t\in T}\sum_{\e_{ij}\in t} \cot(\htmlStyle{color: #0089b6}{\alpha}) \lVert \f(\htmlStyle{color: #298d00}{\e_{ij}}) - R_t(\htmlStyle{color: #298d00}{\e_{ij}}) \rVert^2}$$
$$\min E(\f)$$ $\text{s.t. } \f(\v_i) = \htmlStyle{color: orange;}{b_i},$
$\forall \v_i\in \text{constrained vertices}$
$$\f$$ $$M=(V,T)$$ $$\hat{M}=(\hat{V},T)$$ $$R_t$$
$$\f$$ $$S$$ $$\tilde{S}$$

ARAP Overview

Continuous

Discrete

Properties

$$E(\f,R) = \int_S \lVert J_\f - R \rVert^2 dS$$
constant $R_t$ over
each triangle
Face ARAP [LZXGG08]
$$\frac{1}{4}\sum_{t\in T}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_t(\e_{ij}) \rVert^2$$
no bending
penalty
$$R_1$$ $$R_2$$

Different Regions (1)

Face wise

$$E(\f,\{R_t\})=\frac{1}{4}\sum_{t\in T}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_t(\e_{ij}) \rVert^2$$
$$E(\f,\{\htmlClass{blue-highlight}{R_t}\})=\frac{1}{4}\htmlClass{blue-highlight}{\sum_{t\in T}}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - \htmlClass{blue-highlight}{R_t}(\e_{ij}) \rVert^2$$
$$E(\f,\{R_t\})=\frac{1}{4}\sum_{t\in T}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_t(\e_{ij}) \rVert^2$$
$$R_0$$ $$R_1$$ $$R_2$$ $$R_3$$ $$R_4$$ $$R_5$$ $$R_6$$ $$R_7$$ $$R_8$$ $$R_9$$

Vertex star wise

$$E(\f,\{R_{\v}\})=\frac{1}{4}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$E(\f,\{\htmlClass{blue-highlight}{R_{\v}}\})=\frac{1}{4}\htmlClass{blue-highlight}{\sum_{\v\in V}}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - \htmlClass{blue-highlight}{R_{\v}}(\e_{ij}) \rVert^2$$
$$E(\f,\{R_{\v}\})=\frac{1}{4}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$E(\f,\{R_{\v}\})=\frac{1}{4}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\frac{1}{2}\e_{ij}) - R_{\v}(\frac{1}{2}\e_{ij}) \rVert^2$$
$$E(\f,\{R_{\v}\})=\frac{1}{4}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \frac{1}{4} \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$E(\f,\{R_{\v}\})=\frac{1}{16}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$R_1$$ $$R_2$$ $$R_3$$

ARAP Overview

Continuous

Discrete

Properties

$$E(\f,R) = \int_S \lVert J_\f - R \rVert^2 dS$$
constant $R_t$ over
each triangle
Face ARAP [LZXGG08]
$$\frac{1}{4}\sum_{t\in T}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_t(\e_{ij}) \rVert^2$$
no bending
penalty
constant $R_{\v}$ over
each vertex star
Spokes-and-rims ARAP [CPSS10]
$$\frac{1}{16}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$

Result

ARAP Overview

Continuous

Discrete

Properties

$$E(\f,R) = \int_S \lVert J_\f - R \rVert^2 dS$$
constant $R_t$ over
each triangle
Face ARAP [LZXGG08]
$$\frac{1}{4}\sum_{t\in T}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_t(\e_{ij}) \rVert^2$$
no bending
penalty
constant $R_{\v}$ over
each vertex star
Spokes-and-rims ARAP [CPSS10]
$$\frac{1}{16}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
(asymmetries)

Different Regions (2)

Constant $R$ per vertex star

Constant $R$ per Voronoi cell

Orthogonal dual

Constant $R$ per Voronoi cell

Constant $R$ per orthogonal dual cell

Assumption: Delaunay mesh

Discretization

Non-conforming Crouzeix-Raviart basis
for finite element method

Input

Output

Energy over a triangle:

$$\frac{1}{4}\sum_{\e_{ij}\in t} \cot(\htmlStyle{color: #0089b6}{\alpha}) \lVert \f(\htmlStyle{color: #298d00}{\e_{ij}}) - R_t(\htmlStyle{color: #298d00}{\e_{ij}}) \rVert^2$$
$$\frac{1}{4}\sum_{\v\in V}\sum_{\e_{ij}\in N(\v)} \cot(\alpha) \lVert \f(\frac{1}{2}\e_{ij}) - R_{\v}(\frac{1}{2}\e_{ij}) \rVert^2$$
$$\frac{1}{16}\sum_{\v\in V}\sum_{\e_{ij}\in N(\v)} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$\f$$ circumcenters
Assumption: Delaunay mesh

ARAP Overview

Continuous

Discrete

Properties

$$E(\f,R) = \int_S \lVert J_\f - R \rVert^2 dS$$
constant $R_t$ over
each triangle
Face ARAP [LZXGG08]
$$\frac{1}{4}\sum_{t\in T}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_t(\e_{ij}) \rVert^2$$
no bending
penalty
constant $R_{\v}$ over
each vertex star
Spokes-and-rims ARAP [CPSS10]
$$\frac{1}{16}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
triangulation
dependent
(asymmetries)
constant $R_{\v}$ over
each orthogonal dual
and $\f$ is discontinous
Orginal ARAP [SA07]
$$\frac{1}{16}\sum_{\v\in V}\sum_{\e_{ij}\in N(\v)} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
Assumption: Delaunay mesh

Result

Assumption: Delaunay mesh

Non Delaunay meshes

Constant $R$ per orthogonal dual cell

Assumption: Delaunay mesh

Artifacts and divergence

ARAP Overview

Continuous

Discrete

Properties

$$E(\f,R) = \int_S \lVert J_\f - R \rVert^2 dS$$
constant $R_t$ over
each triangle
Face ARAP [LZXGG08]
$$\frac{1}{4}\sum_{t\in T}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_t(\e_{ij}) \rVert^2$$
no bending
penalty
constant $R_{\v}$ over
each vertex star
Spokes-and-rims ARAP [CPSS10]
$$\frac{1}{16}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
triangulation
dependent
(asymmetries)
constant $R_{\v}$ over
each orthogonal dual
and $\f$ is discontinous
Orginal ARAP [SA07]
$$\frac{1}{16}\sum_{\v\in V}\sum_{\e_{ij}\in N(\v)} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
may diverge
if not Delaunay

Orthogonal dual $\neq$ Voronoi cell

Constant $R$ per orthogonal dual cell

Constant $R$ per Voronoi cell

Constant $R$ per orthogonal dual cell of Delauany triangulation

Intrinsic Delaunay triangulation

 

Intrinsic ARAP

Original ARAP

$$\frac{1}{16}\sum_{\v\in V}\sum_{\e_{ij}\in N(\v)} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$\frac{1}{16}\sum_{\v\in V}\sum_{\htmlClass{blue-highlight}{\e_{ij}\in N(\v)}} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$\frac{1}{16}\sum_{\v\in V}\sum_{\htmlClass{blue-highlight}{\e_{ij}\in N(\v)}} \cot(\htmlClass{green-highlight}{\alpha}) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$\frac{1}{16}\sum_{\v\in V}\sum_{\htmlClass{blue-highlight}{\e_{ij}\in N(\v)}} \cot(\htmlClass{green-highlight}{\alpha}) \htmlClass{red-highlight}{\lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2}$$
$$\v_i$$ $$\v_k$$ $$\v_j$$
We need to "externalize" intrinsic edges:
$$ \begin{align*} \htmlData{fragment-index=40}{s_{ik}^t} &\htmlData{fragment-index=40}{=} \htmlData{fragment-index=35}{((1-a)\v_m+a\v_n)}\htmlData{fragment-index=40}{-(b\v_o+(1-b)\v_p)}\\ &\htmlData{fragment-index=45}{= Vb_{ik}^t} \end{align*}$$ $\f(s_{ik}^t) = \f(V)b_{ik}^t$

Intrinsic ARAP

$$\frac{1}{16}\sum_{\v\in V}\htmlData{fragment-index=20}{\sum_{\htmlClass{blue-highlight}{\e_{ik}\in N_i(\v)}}} \htmlData{fragment-index=25}{\cot(\htmlClass{green-highlight}{\alpha})}\htmlData{fragment-index=55}{\sum_{\s_{ik}^t\in \e_{ik}}} \htmlData{fragment-index=60}{\htmlClass{opaque}{\sigma_{ik}^t}} \htmlData{fragment-index=55}{\htmlClass{red-highlight}{\lVert \f(\s_{ik}^t) - R_{\v}(\s_{ik}^t) \rVert^2}}$$
$$s_{ik}^1$$ $$s_{ik}^2$$ $$\v_i$$ $$\v_k$$ $$\v_n$$ $$\v_m$$

Results

Speed and convergence

S&R ARAP

iARAP

OG ARAP

S&R ARAP

iARAP

OG ARAP

ARAP Overview

Continuous

Discrete

Properties

$$E(\f,R) = \int_S \lVert J_\f - R \rVert^2 dS$$
constant $R_t$ over
each triangle
Face ARAP [LZXGG08]
$$\frac{1}{4}\sum_{t\in T}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_t(\e_{ij}) \rVert^2$$
no bending
penalty
constant $R_{\v}$ over
each vertex star
Spokes-and-rims ARAP [CPSS10]
$$\frac{1}{16}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
triangulation
dependent
(asymmetries)
constant $R_{\v}$ over
each orthogonal dual
and $\f$ is discontinous
Orginal ARAP [SA07]
$$\frac{1}{16}\sum_{\v\in V}\sum_{\e_{ij}\in N(\v)} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
may diverge
if not Delaunay
intrinsic Delaunay triangulation
Intrinsic ARAP
$$\frac{1}{16}\sum_{\v\in V}\sum_{\e_{ij}\in N_i(v)}\sum_{\s_{ij}^t\in \e_{ij}} \sigma_{ij}^t\cot(\alpha) \lVert \f(\s_{ij}^t) - R_{\v}(\s_{ij}^t) \rVert^2$$
best of
both worlds

Yet another Laplacian

Skiped

Thank You!

Code available!

Backup

Yet another Laplacian

$$\min E(\f,R) = \min \int_{\tilde{S}} \lVert J_\f - R \rVert^2 dS$$
Necessary condition [CSSP10]: $$\Delta\f = \text{div} R$$
Global step in FARAP, S&R-ARAP and OG ARAP ➜ leads to cotan-Laplace.
iARAP leads to a different Laplace: $L_{ei}$.
Properties of [WMKG07]
symmetric
weak
strong
linear precision
positive weights
PSD
local
$L_{ei}$