$$E(\f,\{R_{\v}\})=\frac{1}{4}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$E(\f,\{\htmlClass{blue-highlight}{R_{\v}}\})=\frac{1}{4}\htmlClass{blue-highlight}{\sum_{\v\in V}}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - \htmlClass{blue-highlight}{R_{\v}}(\e_{ij}) \rVert^2$$
$$E(\f,\{R_{\v}\})=\frac{1}{4}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$E(\f,\{R_{\v}\})=\frac{1}{4}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\frac{1}{2}\e_{ij}) - R_{\v}(\frac{1}{2}\e_{ij}) \rVert^2$$
$$E(\f,\{R_{\v}\})=\frac{1}{4}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \frac{1}{4} \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$
$$E(\f,\{R_{\v}\})=\frac{1}{16}\sum_{\v\in V}\sum_{t\in N(\v)}\sum_{\e_{ij}\in t} \cot(\alpha) \lVert \f(\e_{ij}) - R_{\v}(\e_{ij}) \rVert^2$$