Diffusion Diagrams
Voronoi Cells and Centroids from Diffusion
Philipp Herholz, Felix Haase, Marc Alexa
Motivation

Bisectors, Voronoi Cells, Centroids
Fundamental Geometric Primitives
Motivation

Lloyd Iteration

Centroidal Voronoi Tessellation
Motivation
Geometric Computation on Curved Surfaces
Distances: Geodesics

- Voronoi cells and centroids for curved surfaces are mostly based on geodesics

- Options:
 - fast marching
 - exact polyhedral distance
 - geodesics in heat
Distances: Geodesics

• Voronoi cells and centroids for curved surfaces are mostly based on geodesics

• Options:
 • fast marching
 • exact polyhedral distance
 • geodesics in heat
Distances: Geodesics

• Voronoi cells and centroids for curved surfaces are mostly based on geodesics

• Options:
 • fast marching
 • exact polyhedral distance
 • geodesics in heat

 linear approx. of heat + normalization of grad. + integration
Distance from Heat Diffusion

- Same for Euclidean domains
- Accurate: Cells converge quadratically under mesh refinement for Euclidean and Spherical domains
- Stable: Centroids are better behaved
- Fast: Diffusion is easy to compute for triangle meshes and can be accelerated by localization and parallelization
Distance from Heat Diffusion

• Same for Euclidean domains

• Accurate: Cells converge quadratically under mesh refinement for Euclidean and Spherical domains

• Stable: Centroids are better behaved

• Fast: Diffusion is easy to compute for triangle meshes and can be accelerated by localization and parallelization
Heat Diffusion

Distribution of heat starting from a given heat distribution after time t.

p
Heat Diffusion

Distribution of heat starting from a given heat distribution after time t
Heat Diffusion

Distribution of heat starting from a given heat distribution after time t.

$k(t, p, q)$
Heat Diffusion

Distribution of heat starting from a given heat distribution after time t
Discrete Heat Diffusion

Only need Laplace-Beltrame Operator
Discrete Heat Diffusion

Only need Laplace-Beltrame Operator for Semi-Implicit Time Stepping

$$(I - tM^{-1}L_C)u = h$$
\[(I - tM^{-1}L_C)u = h\]

Discrete Heat Diffusion

Piecewise Linear Initial Conditions
Discrete Heat Diffusion

Piecewise Linear Heat Distribution

\[(I - tM^{-1}L_C)u = h\]
\[(M - tL_C)u = Mh\]

Discrete Heat Diffusion

Sparse Symmetric Linear System
Precompute Cholesky Factors
Voronoi Cells from Heat
Voronoi Cells

- Given Points
Voronoi Cells

- Given Points
- Bisectors defines Voronoi Cell
Heat Cells

• Given Points
Heat Cells

- Given Points
- Compute heat diffusion from each of the points
Heat Cells

- Given Points
- Compute heat diffusion from each of the points
Heat Cells

- Given Points
- Compute heat diffusion from each of the points
Heat Cells

- Given Points
- Compute heat diffusion from each of the points
Heat Cells

- Given Points
- Compute heat diffusion from each of the points
- Define cell based on maximum heat
Heat Cells

- Given Points
- Compute heat diffusion from each of the points
- Define cell based on maximum heat
- Maximum heat = minimum distance for radial heat kernels
Accuracy / Convergence
Heat Cells - Numerics

• Consider perfect (smooth) sphere with two generators

• Bisectors are known analytically
Heat Cells - Numerics

- Consider perfect (smooth) sphere with two generators
- Bisectors are known analytically
Heat Cells - Numerics

• Consider perfect (smooth) sphere with two generators
• Bisectors are known analytically
• Consider triangulated spheres converging to smooth sphere
Heat Cells - Numerics

- Consider perfect (smooth) sphere with two generators
- Bisectors are known analytically
- Consider triangulated spheres converging to smooth sphere
 - Irregular triangles
 - Similar size
Heat Cells - Numerics

- Consider perfect (smooth) sphere with two generators
- Bisectors are known analytically
- Consider triangulated spheres converging to smooth sphere
 - Irregular triangles
 - Similar size
Heat Cells - Numerics

- Consider perfect (smooth) sphere with two generators
- Bisectors are known analytically
- Consider triangulated spheres converging to smooth sphere
 - Irregular triangles
 - Varying size
Heat Cells - Numerics

• Consider perfect (smooth) sphere with two generators

• Bisectors are known analytically

• Consider triangulated spheres converging to smooth sphere
 • Irregular triangles
 • Varying size
Heat Cells vs. Geodesic Voronoi Cells

• Compared to Polyhedral Distance
 • Same asymptotic accuracy (relative to smooth surface)
 • Much faster

• Compared to Geodesics in Heat
 • Better accuracy (quadratic vs. linear)
 • Faster (only one of two linear solves)
Centroids from Heat
Centroids

= Center of Mass
Riemannian Center of Mass

$0 = \int_C (\mathbf{x} - \mathbf{c}) \, d\mathbf{x}$

$c = \arg \min_{\mathbf{y}} \int_C (\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y}) \, d\mathbf{x}$

Riemannian Center of Mass

= Minimizer of Sum of Squared Distances
Riemannian Center of Mass

= Minimizer of Sum of Squared Distances

\[0 = \int_{\mathcal{C}} (\mathbf{x} - \mathbf{c}) \, d\mathbf{x} \]

\[\mathbf{c} = \arg \min_{\mathbf{y}} \int_{\mathcal{C}} \|\mathbf{x} - \mathbf{y}\|^2 \, d\mathbf{x} \]
Riemannian Center of Mass

= Minimizer of Sum of Squared Distances

\[0 = \int_C (\mathbf{x} - \mathbf{c}) \, dx \]

\[\mathbf{c} = \arg\min_{\mathbf{y}} \int_C d^2(\mathbf{x}, \mathbf{y}) \, dx \]

Riemannian Center of Mass

= Minimizer of Sum of Squared Distances
Heat Centroids
Heat Centroids

\[c = \arg \min_y \int_c d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_c k(t, x, y) \, dx \]

Heat Centroids

= Maximizer of Heat in Cell
Heat Centroids

\[c = \arg \min_y \int_C d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_C k(t, x, y) \, dx \]

Heat Centroids

= Maximizer of Heat in Cell
Heat Centroids

\[c = \arg \min_y \int_C d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_C k(t, x, y) \, dx \]

Heat Centroids

= Maximizer of Heat in Cell
\[c = \arg \min_y \int_{c} d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_{c} k(t, x, y) \, dx \]

Heat Centroids

= Maximizer of Heat in Cell
Heat Centroids

\[c = \arg \min_y \int_c d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_c k(t, x, y) \, dx \]

Heat Centroids

= Maximizer of Heat in Cell
Heat Centroids

\[c = \arg \min_y \int_C d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_C k(t, x, y) \, dx \]

Heat Centroids

= Maximizer of Heat in Cell
Heat Centroids

\[c = \arg \min_y \int_C d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_C k(t, x, y) \, dx \]

Heat Centroids

= Maximizer of Heat in Cell
Heat Centroids

\[c = \arg \min_y \int_c d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_c k(t, x, y) \, dx \]

Heat Centroids

= Maximizer of Heat in Cell
Heat Centroids

\[c = \arg \min_y \int_c d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_c k(t, x, y) \, dx \]

Heat Centroids

= Maximizer of Heat in Cell
Heat Centroids

\[c = \arg \min_y \int_c d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_c k(t, x, y) \, dx \]

Heat Centroids
= Maximizer of Heat in Cell
Heat Centroids

\[c = \arg \min_y \int_C d^2(x, y) \, dx \]

\[c(t) = \arg \max_y \int_C k(t, x, y) \, dx \]

Heat Centroids

= Maximum Heat Remaining Cell
Heat Centroids

\[c = \arg \min \int_C d^2(x, y) \, dx \]

\[c(t) = \arg \max \int_C k(t, x, y) \, dx \]

Heat Centroids

= Maximum Heat Remaining Cell
Similarity to Euclidean Centroids
\[c = \arg \min_y \int_C \|x - y\|^2 \, dx \]

\[c(t) = \arg \max_y \int_C k(t, x, y) \, dx \]

Heat Centroids

Euclidean domain
\[c = \arg \min_y \int_C \| x - y \|^2 \, dx \]

\[c(t) = \arg \max_y \int_C k(t, x, y) \, dx \]

\[k(t, x, y) = \frac{1}{(4\pi t)^{d/2}} \exp \left(-\frac{\|x - y\|^2}{4t} \right) \, dx \]

Heat Centroids

Euclidean domain
\[
c = \arg \min_y \int_C \|x - y\|^2 \, dx
\]

\[
c(t) = \arg \max_y \int_C \frac{1}{(4\pi t)^{d/2}} \exp \left(-\frac{\|x - y\|^2}{4t} \right) \, dx
\]

Heat Centroids
Euclidean domain
\[c = \arg \min_y \int_C \| x - y \|^2 \, dx \]

\[c(t) = \arg \max_y \int_C \frac{1}{(4\pi t)^{d/2}} \exp \left(-\frac{\| x - y \|^2}{4t} \right) \, dx \]

Heat Centroids
Euclidean domain
\[c = \arg \min_y \int_C \|x - y\|^2 \, dx \]

\[c(t) = \arg \max_y \int_C \exp \left(-\frac{\|x - y\|^2}{4t} \right) \, dx \]

Heat Centroids

Euclidean domain
Taylor expansion
\[c = \arg \min_y \int_C \|x - y\|^2 \, dx \]

\[c(t) = \arg \max_y \int_C \exp \left(-\frac{\|x - y\|^2}{4t} \right) \, dx \]

\[\exp \left(-\frac{\|x - y\|^2}{4t} \right) \, dx = 1 - \frac{\|x - y\|^2}{4t} + \frac{\|x - y\|^4}{32t^2} - \ldots \]

Heat Centroids

Euclidean domain

Taylor expansion
Heat Centroids

Euclidean domain

\[c = \arg\min_y \int_C \|x - y\|^2 \, dx \]

\[c(t) = \arg\max_y \int_C 1 - \frac{\|x - y\|^2}{4t} + \frac{\|x - y\|^4}{32t^2} - \ldots \, dx \]
\[c = \arg \min_y \int_C \|x - y\|^2 \, dx \]

\[c(t) = \arg \max_y \int_C 1 \times \frac{\|x - y\|^2}{4t} + \frac{\|x - y\|^4}{32t^2} - \ldots \, dx \]

Heat Centroids
Euclidean domain
\[c = \arg \min_y \int_C \| x - y \|^2 \, dx \]

\[c(t) = \arg \min_y \int_C \frac{\| x - y \|^2}{4t} - \frac{\| x - y \|^4}{32t^2} + \ldots \, dx \]

Heat Centroids
Euclidean domain
\[c = \arg \min_y \int_C \|x - y\|^2 \, dx \]

\[c(t) = \arg \min_y \int_C \frac{\|x - y\|^2}{4t} - \frac{\|x - y\|^4}{32t^2} + \ldots \, dx \]
\[c = \arg \min_y \int_C \|x - y\|^2 \, dx \]

\[c(t) = \arg \min_y \int_C \|x - y\|^2 - \frac{\|x - y\|^4}{8t} + \ldots \, dx \]

Heat Centroids

Euclidean domain
Stability of Heat Centroids
Stability of Centroids - Cells
Stability of Geodesic Centroids
Stability of Geodesic Centroids
Stability of Heat Centroids
Computational Speed
Linear Solve vs. Polyhedral Geodesics

\[CC^T u = Mh \]

Sparse Cholesky

\[CC^T = (M - tL_C) \]

\(t \text{ [ms]} \)

#vertices

Polyhedral geodesics
Diffusion method
Linear Solve vs. Polyhedral Geodesics

- Polyhedral geodesics
- Diffusion method

t [ms]

\[
CC^T u = Mh
\]

\[
CC^T = (M - tL_C)
\]

Without parallelization

Sparse Cholesky

#vertices
Localized Sparse Solve

Intermediate solution for Sparse RHS is sparse!
Localized Sparse Solve

Eventual Solution is not sparse!

\[Cx = y \]

\[\begin{pmatrix}
 \bullet \\
 \bullet \\
 \bullet \\
 \bullet \\
 \bullet \\
 \end{pmatrix} \quad x = \quad \begin{pmatrix}
 \bullet \\
 \bullet \\
 \bullet \\
 \bullet \\
 \bullet \\
 \end{pmatrix} \]
Localized Sparse Solve

$C x = y$

$\begin{pmatrix}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{pmatrix}
\begin{pmatrix}
\end{pmatrix}
\begin{pmatrix}
\bullet \\
\bullet \\
\end{pmatrix}$

... but can be localized to subset
Localized Sparse Solve - Error
Results
Centroidal Heat Tessellation (CHT)
Centroidal Heat Tesselations (CHT)

• Applicable to large meshes

• Intrinsic, so no problem with self intersection

• Equalizes area
Anisotropic CHT

Lift points + normals to 6D
Only Laplace-Beltrami operator matrix changes
CHT for Meshing Point Clouds

Applies to every discrete representation with Laplace operator
Natural neighbor coordinates

• Define barycentric coordinates based on area of Voronoi cells
Natural neighbor coordinates
Natural neighbor coordinates
Recall: Distance from Heat Diffusion

- Same for Euclidean domains
- Accurate: Cells converge quadratically under mesh refinement for Euclidean and Spherical domains
- Stable: Centroids are better behaved
- Fast: Diffusion is easy to compute for triangle meshes and can be accelerated by localization and parallelization
Thanks!

• My co-authors:
 • Philipp Herholz
 • Felix Haase
 • Boris Springborn

• Funding agencies
 • ERC (“XShape”)
 • Einstein Foundation
Heat Centroids - Numerics

- Irregular triangulation of disk
Heat Centroids - Numerics

- Irregular triangulation of disk
- Consider nice polygons
Heat Centroids - Numerics

- Irregular triangulation of disk
- Consider not so nice polygons
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram

Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram

Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram

Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram

Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex
Heat Diagram
Assign triangles based on heat in vertex