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Abstract

A discrete Laplace-Beltrami operator is called perfect if it possesses all the important properties of its smooth
counterpart. It is known which triangle meshes admit perfect Laplace operators and how to fix any other mesh by
changing the combinatorics. We extend the characterization of meshes that admit perfect Laplacians to general
polygon meshes. More importantly, we provide an algorithm that computes a perfect Laplace operator for any
polygon mesh without changing the combinatorics, although, possibly changing the embedding. We evaluate this

algorithm and demonstrate it at applications.

1. Introduction

Discrete approximations of the Laplace-Beltrami operator
are at the heart of many mesh processing techniques, such
as representation [Sor06], deformation [BSO08], spectral pro-
cessing [ZVKDI10], or descriptors [BBGO11]. For triangle
meshes the cotan-Laplacian [PP93, DMSB99] is a common
choice because it enjoys many desirable properties. How-
ever, as discussed by Wardetzky et al. [WMKGO7], discrete
Laplace operators cannot be perfect in the sense that they may
fail to posses all properties of their smooth counterpart for
an arbitrary triangle mesh. We recall the desired properties
in Section 2 and explain why they are important for mesh
processing applications.

The notion of perfect Laplace operators can be linked to
force networks in equilibrium that only pull vertices along
edges. This viewpoint allows the characterization of trian-
gle meshes that admit perfect Laplace operators, namely, so
called regular or weighted Delaunay meshes. Vertex weights
can be used to generalize the cotan-Laplacian [Gli05, Gli07],
and for any weighted Delaunay mesh there exists a perfect
Laplace operator of this form [dGMMD14].

The situation is far less developed for general polygon
meshes, i.e., meshes with face degrees larger than three. Alexa
and Wardetzky [AW11] provide a construction that reduces
to the cotan-Laplace for triangle meshes, but it is unclear
for which meshes this operator is perfect. More importantly,
there is no obvious generalization for weighted meshes, and
therefore the question of existence of perfect Laplace oper-
ators for polygon meshes is open. Using the connection to
orthogonal duals or force networks we are able to close this
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gap and generally describe (planar) meshes that admit perfect
Laplacians (see Section 4).

Our main contribution is an algorithm that generates per-
fect Laplace operators for any polygonal mesh without chang-
ing the combinatorics but possibly changing the embedding.
The main ideas for this algorithm are as follows:

1. We identify a perfect Laplace operator for a mesh with
given combinatorics with a unique embedding by fixing
the boundary. This defines a mapping from the coefficients
of the Laplace operator to the edge lengths.

2. By analogy to force networks, we derive a simple update

rule for the coefficients such that the edge lengths converge
to the desired ones (if possible).

We describe and discuss this algorithm in Section 3. An
important point of the algorithm is that it is based only on
defining boundary conditions and measuring edge lengths of
the embedding and, thus, has a natural extension to (possibly
closed) non-planar meshes embedded in higher dimension.

We demonstrate the construction of perfect Laplace opera-
tors for polygon meshes by means of self-supporting surfaces
with polygonal tiles as well as by computing parameteriza-
tions in Section 6 and discuss the properties of our construc-
tion, in particular in relation to other approaches, in Section 7.

2. Discrete Laplace operators

The smooth Laplace-Beltrami operator has several properties
that naturally translate into properties of a discrete analogue.
Loosely following Wardetzky et al. [WMKGO7], we call a dis-
crete Laplace operator perfect if it is locally defined, symmet-
ric, non-negative, affinely invariant (the constant functions
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are in the kernel), and has linear precision. In the following,
we detail these properties and discuss implications.

Let M = (V,E,F) be a polygon mesh. A (discrete)
Laplace operator L on M is defined by symmetric coef-
ficients w;; = wj; associated to each edge (i, j) € E, acting
on real-valued functions u : V — R, i — u; by:

Lu)i= Y oj(uj—u). )

(i.j)€E

This definition identifies all discrete Laplacians that are local
and symmetric in the sense of Wardetzky. Being defined on
the differences of vertex values, the constant functions are
always in the kernel, making the operator affinely invariant.

Non-negativity A Laplace operator is said to be non-
negative, if all its coefficients are non-negative and if there is
a spanning tree consisting of edges with positive coefficients.
In combination with symmetry, this property ensures that
(i) the operator is positive semi-definite and (ii) harmonic
functions (with respect to the operator and appropriate bound-
ary conditions) obey the maximum principle. This principle
states that harmonic functions take their extremal values at
the boundary. In the context of our work (and more gener-
ally for the application of computing parameterizations) it
ensures that Laplacians can be used to obtain embeddings
(with convex boundary) of planar graphs [Tut63].

Linear precision In the smooth setting, the Laplace-
Beltrami operator L applied to the embedding x of a smooth
2D manifold yields the area gradient [dC76]. In particular,
it vanishes on planar domains. Hence, in the discrete setting
we ask that (Lu); = 0 if i is an interior vertex and all edges
(i,j) € E are contained in a plane. Linear precision implies
that curvature flows modify the mesh only in normal direction
(i.e., there is no tangential smoothing) and parameterization
based on the Laplacian preserves meshes in the plane.

Force networks For symmetric Laplace operators of the
form in Eq. (1), the consequences of linear precision and
non-negativity can be made more intuitive by considering
the (planar) mesh as a force network [Max64]: each edge is
a spring pulling or pushing the incident vertices together or
apart from each other. In this picture, the coefficients ®;; take
the role of spring constants.

Consider the mesh to be embedded with vertex positions
{x;} and edges e;; = x; —x;. Then Hook’s law takes the form

fij = wjjej, @

describing the force vector f;; acting on the spring (i, j). Com-
paring this to Eq. (1), we see that applying the Laplace oper-
ator to the vertex positions yields the sum of the forces for
each node. Hence, linear precision means that forces cancel
in each interior node or, in other words, the force network is
in equilibrium. The sign of the coefficients ;; distinguishes

between pulling or pushing forces. If all coefficients are pos-
itive, vertices are in equilibrium and the springs along all
edges are pulling.

No free lunch Based on the force network interpretation of
Laplacians, Wardetzky et al. [WMKGO07] prove that there are
triangle meshes without a discrete Laplacian of the form in
Eq. (1) obeying both linear precision and non-negativity (see
Figure 2 for an example). However, some applications call for
a perfect Laplacian: parameterization techniques based on the
Laplacian, for example, require an injective mapping; yet this
is only guaranteed if the coefficients are non-negative (and
the boundary is fixed in convex position). Asking addition-
ally that planar meshes are mapped to themselves requires
linear precision. See Section 6 for details on parameterization.
Further applications include the computation of self support-
ing surfaces (Section 6) and the fitting of discrete minimal
surfaces with fixed convex boundaries.

3. Method

In this section, we derive an algorithm for constructing a
perfect Laplace operator for a given mesh. As not all meshes
admit such an operator, the mesh vertices may be perturbed by
the algorithm. The idea of our approach for planar meshes can
be intuitively described in terms of force networks: starting
from an arbitrary set of positive spring constants, we compute
vertex positions by fixing the boundary. Then we compare
the resulting edge lengths to the desired ones. If an edge is
too short we lower the spring constant, yet keeping it positive.
If the edge is too long we increase the spring constant.

In the following we describe this idea rigorously, providing
a principled way for updating the coefficients. By introducing
different boundary conditions, we can extend this idea to
meshes embedded into R>. An analysis of the steady state
yields a characterization of the solution.

3.1. Planar polygon meshes

Let M = (V,E,F) be a planar 3-connected polygon mesh
with single boundary oM, and let the geometry be given by
vertex positions X € RIVI¥2 where the positions of vertices
appear as row vectors. The i-th row is referred to as %;, i.e.,
the vertex position of vertex i. Edge lengths of the input mesh
are denoted by ||&;;||. We assume that the boundary vertices
are in strictly convex position'.

Let the coefficients of the Laplace operator and the edge
lengths at the k-th iteration of the algorithm be given by
k k
of >0 and el 3)
We start with {(DS)) = 1} (or any other positive choice). Then
we repeatedly embed the mesh with the given Laplace oper-

ator and update the coefficients. The updates preserve pos-
itivity of the coefficients, ensuring their positivity for all
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iterations. This algorithm is summarized as pseudo code in
Algorithm 1. The details are discussed in the remainder of
this section.

Embedding Since we assume that the polygon mesh M has
a convex boundary, a solution for the equilibrium state of the
spring network can be obtained by solving Laplace’s equation
given by the coefficients ;; subject to the constraint that the
boundary {%;: i € M} is held fixed. More specifically, at
each iteration k, we solve

oWx®) _p @)
with
o () ek, i¢am
oW _ —ij§f> i=j,i¢ oM b — 0 i¢oM
! I i=j,icaM % icaM
0 otherwise

Since the coefficients are non-negative by construction, the
resulting vertex geometry XM isa unique embedding. This
follows from Tutte’s spring-embedding theorem [Tut63] and
its extension by Floater [Flo97]. In particular, uniqueness
implies that we have a mapping

o;j — ||| ©))

from the Laplace operator coefficients to edge lengths. Note
that this mapping is invariant to multiplying all ®;; with a
constant positive scalar.

Update rule We want to update the coefficients (L)Ef)
that Heg.{) || gets closer to the edge length ||&;;|| of the input
mesh. Since the coefficients are positive, we can derive from

Hook’s law that

such

= It = ol ] ©)

Assuming that forces stay constant for small changes in the
spring constants suggests the following update for the spring
constants:

(k+1) Fij

mi]

)

Combining Eqgs. (6) and (7) eliminates the dependance on
forces and yields our simple multiplicative update rule for
the coefficients:

(k)
(k1) _ (0 Heij ”
Y Y]]

®

(O

After updating all coefficients, we scale them uniformly to
avoid that the coefficients become arbitrarily small or large,
potentially causing numerical problems. Note that the fraction
of current to original edge lengths is always positive so that

wg-() > 0 for all k, as desired.
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Algorithm 1: Compute perfect Laplacian
Input: A mesh M = (V,E, F), coordinates X.
Output: Coordinates x’, coefficients o; -

1 W < 1

2 for k= 1,..., max_iters do

3 solve Qx¥) = p
k k
(k1) *) \|X§' ) _X_(j il
4 (Dij i e —o.l
(1% —%ill
s mlg;m) <_wl(;c+1)/ Y, (0‘)1(';'(+1))2
6 if Hx(k) —x(k=1 || < € then break

7 end

s return x¥ R (Jogc>

3.2. Polygon meshes in space

The algorithm can be readily generalized to polygonal meshes
in 3D. The property of non-negativity carries over directly.
Linear precision on the other hand must be replaced by a
condition on the mean curvature normal

(Lx); = Hm;, )

with H; being the mean curvature and n; being the normal
at vertex i. The mean curvature normal may be computed
using the cotan-Laplacian or the area gradient [AW11]. Con-
dition (9) is consistent with the planar case, since discrete
mean curvature vanishes for planar vertices. Hence, to com-
pute perfect Laplacians for closed 3D meshes, we replace the
right hand side of Eq. (4) with

H,‘Il,‘ ¢ oM
b = ) 10
{xAi i€ oM 1o

3.3. Steady state of the solution

We have applied the algorithm to numerous meshes and in all
our examples it converged quickly and uniformly to a steady
state. An empirical study of convergence will be presented in
Section 5. Based on this experimental evidence we conjecture
that Algorithm 1 converges for arbitrary input meshes with
prescribed convex boundary.

It is instructive, however, to inspect the steady state of the
solution. Recall that we scale the ®;; uniformly and denote
this factor u. The update in Eq. (8) reaches a steady state if,
for any edge, either

el
ij ” =" o af =o0. (11)

(&

In particular, if all ®;; > O then all original edge lengths
are preserved. This means that if a mesh admits a perfect
Laplace operator, it is a steady state of our algorithm. If the
mesh admits no perfect Laplace operator, a subset of edges
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(in planar regions) have zero Laplace coefficients while the
rest is scaled by a constant factor relative to the original ge-
ometry. In the latter case, the lengths of edges corresponding
to zero Laplace coefficients are determined by the embedding
based on the edges with positive coefficients. In a sense, the
algorithm resorts to a subset of the edges, i.e., a coarsening
of the mesh.

4. Meshes admitting perfect Laplacians

Unless we can characterize the meshes that admit perfect
Laplace operators, it is difficult to claim that the algorithm
always performs as expected. In the following, we will there-
fore extend know results for triangle meshes [WMKGO07] to
the general polygonal case.

Recall that a perfect Laplace operator induces a force net-
work that is in equilibrium where all forces are pulling. Note
that, conversely, the existence of such a force network im-
plies the existence of a perfect Laplacian, noting that the
spring constants must be positive. So the existence of perfect
Laplacians corresponds exactly to the existence of pulling
forces such that the nodes are in equilibrium. There is a
useful characterization for such meshes: the vertices can be
lifted such that their convex hull provides the given com-
binatorics [Aur87]. In particular, triangle meshes with this
property are referred to as regulari, yielding the characteri-
zation of meshes that admit perfect Laplace operators in the
sense of Wardetzky et al. [WMKGO7].

However, the notion of meshes admitting lifts into convex
position applies more generally to any planar mesh and the
meshes that do admit such a lift are called regular subdivi-
sions. Jaume and Roter [JR13] analyze the case of regular
subdivisions in detail and in particular distinguish between
convex and strictly convex lifts. This distinction also appears
in the solutions provided by our algorithm (see Section 3.3),
as it translates to distinguishing zero and strictly positive co-
efficients in the Laplace operator. Jaume and Roter also apply
their results to the case of force networks, and we can adapt
their Proposition 4.4 to derive the following characterization:

A polygon mesh in the plane admits a perfect
Laplace operator if there exists a lift of the vertex
positions such that the combinatorics of the con-
vex hull of the vertices is a 3-connected spanning
subgraph of the mesh.

Any edge not part of the subgraph corresponds to a dual edge
of zero length or, equivalently, to a zero coefficient of the
Laplacian.

The polygons in regular subdivisions are quite restricted.
In particular, since they are projections of polyhedral faces,

T We avoid the notion of weighted Delaunay here because it is
limited to triangulations with a single boundary, see for exam-
ple [dGAOD13].

they are necessarily convex. In this view, it is not surpris-
ing that Alexa and Wardetzky [AW11] implicitly consider
a more general construction: any two vertices that are part
of the same face may carry a non-zero coefficient. We may
characterize the meshes that admit a perfect Laplacian with
such additional diagonals as follows: there exists a lift of the
vertex positions such that a subgraph of the combinatorics
of the convex hull of the vertices is a 3-connected spanning
subgraph of the mesh. In particular, a polygon mesh in this
case admits a perfect Laplace operator if it is contained in a
regular triangulation of the vertices.

Note that the natural notion of allowing non-zero coeffi-
cients means that faces with higher degree are an obstruc-
tion for perfect Laplace operators, while allowing diagonals
means that faces with higher degree relax the situation. We
discuss the practical consequences of this distinction further
in Section 7.

5. Results

In order to verify the validity of our approach, we performed
a series of experiments covering different classes and types
of meshes. We check for convergence as described in Al-
gorithm 1 with a value of € = 10~°. All meshes have been
scaled to fit a unit bounding box. For all experiments we
conducted, the algorithm converged numerically.

Triangle meshes Our first test case concerned triangular
meshes. To this end, we created random triangle meshes
by computing tessellations of the unit square and unit cir-
cle using the software Triangle [She(02]. In addition, we
created convex tessellations of random point clouds using
CGAL [Thel5]. Since the tessellation algorithms create De-
launay triangulations, we also further modified the tessella-
tions by randomly flipping approximately 20% of the edges.
While flipping, we ensured that the boundary is preserved
and edges are not flipped if the flip would introduce inverted
triangles. We tested the algorithm on 1000 random meshes,
each with about 50 vertices sampled on a square and a disc.
For all cases, we observed that each iteration produces a valid
embedding together with an accompanying perfect Laplacian.
Moreover, the vertices reached steady state and converged
towards the input mesh, achieving good approximations after
5-10 iterations. This indicates that for all these cases the
randomly generated meshes were regular, admitting a per-
fect Laplace operator. Figures 1(a) and (b) show two typical
examples.

A more challenging test case is given by meshes that do
not admit a perfect Laplacian. To this end, we created five
manual examples with 8 to 15 vertices, such as the shadow of
the Schonhardt polyhedron shown in Figure 2. The algorithm
handles these cases as well; however, necessarily by chang-
ing some edge lengths and thereby moving the vertices (see
Section 3.3 for details).

While we observe that our approach reaches steady state
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Figure 1: Results created by our approach for different classes of polygon meshes. Each row depicts iterations of our algorithm
starting with an input tesselation.

(a) Delaunay triangulation: Original, 1, 5, and 20 iterations.

(b) Regular triangulation that is not Delaunay: Original, 1, 5, and 20 iterations.
(c) Polygonal mesh with convex faces: Original, 1, 5, and 20 iterations.

(d) Polygonal mesh with non-convex faces: Original, 1, 5, and 50 iterations.

(e) Polygonal mesh with non-convex faces: Original, 1, 5, and 50 iterations.
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AL\ A A A

Figure 2: The shadow of the Schonhardt polyhedron, a well-known examples for triangular mesh not admiting a perfect
Laplacian. From left to right: Original, 1, 5, 10, 50 iterations of our algorithm.

in all cases, the obtained solutions are not unique. Choosing
different initial coefficients typically leads to different results.
In particular, for Delaunay meshes with convex boundary,
our approach does not recover the cotan-Laplacian (which is
perfect in this case).

Polygon meshes In a second series of tests we considered
planar polygonal meshes. Proceeding as in the previous sec-
tion, we created random triangle meshes but removed some
of the edges. As for triangle meshes, we observed conver-
gence for all 1000 random polygonal meshes tested. The
algorithm enforces convex faces in all iterations even in case
of non-convex input meshes. Two examples produced by our
approach are shown in Figures 1(c), (d) and (e).

3D meshes For meshes embedded in 3-space the algorithm
performs similar to the 2D case. Figure 3 illustrates the con-
vergence for a polygonal input mesh. We tested the algorithm
on a number of standard meshes and added artificial noise to
assess robustness. For all examples the algorithm converged
and produced a valid perfect Laplacian. The next section
details applications involving meshes in 3-space.

6. Applications

Self-supporting surfaces Several recent works investigate
self-supporting surfaces in equilibrium [dGAOD13,PBSH13,
LPS*13]. The central idea is that a network of rigid struts
can withstand its own dead load if it is in force equilibrium at
the points where struts meet (vertices), except for supported
vertices where force can be dissipated.

Denoting the gravitational force acting on vertex x; along
the z-direction by F; and the force along the edge €;; by f;;
the condition for structural stability at vertex i becomes

0

X g ith f;; >0. (12
Z ﬁj”X'*X'H_ ,  witl fzJ, . (12)
ek XX —F

All forces have to be compressive as indicated by the posi-
tivity of the forces. Considering 0;; = f;;/||x;j — x;|| we are
faced with the problem of computing a perfect Laplacian
for a polygon mesh embedded in 3-space. Hence, we can
apply our algorithm with appropriate boundary conditions

T

X
i
NN

Figure 4: Fitting of self-supporting surfaces to several polyg-
onal meshes. The last row shows the planar projection of
the input mesh above, the projection of the self-supporting
surface and its dual.

for supported vertices. In contrast to recent work, our algo-
rithm does not rely on interior-point solvers and can be easily
implemented using a sparse linear solver. Moreover, our sys-
tem handles polygon meshes naturally. The results of our
algorithm match results of existing methods. Self-supporting
surfaces for several input meshes and comparisons to state of
the art methods are shown in Figures 4 and 5, respectively.

In contrast to related work, we do not modify the combi-
natorics of the mesh which limits the direct applicability of
our approach. However, our algorithm can serve as a central
building block in a more sophisticated algorithm, driving a
remeshing step based on the force distribution or in situations
where a certain frame topology needs to be fixed.

Parameterization A classical application of discrete Lapla-

cians is mesh parameterization. Given a fixed convex bound-
ary in the plane and a discrete Laplacian of a polygon mesh
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Figure 3: Given a polygonal input mesh (left), our algorithm is applied. Iteration 1,2,5 and 20 are shown (center). The converged
result is shown on the right. The color coding illustrates the vertex displacement from input mesh to the result. The maximal

vertex displacement is about 0.85% of the bounding box diagonal.
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Figure 5: Our algorithm produces self-supporting sur-
faces comparable to state of the art methods. The input
mesh (top, left) is deformed towards a self-supporting sur-
face by our method (top, right), the method by Vouga et
al. [VHWP12] (bottom, left), and using the technique of de
Goes et al. [dGAODI13].

Figure 6: Parameterizing using the Laplace operator of
Alexa et al. [AWI11] can introduce flipped faces (left, flipped
faces marked red). Our operator ensures a flip-free embed-
ding.
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embedded in R we can compute an embedding into R? by
solving Eq. (4). Using operators with negative coefficients
can result in face flips, i.e., the embedding is not injective.
For applications like texture mapping this behavior in not
acceptable. With our algorithm a flip-free embedding is al-
ways guaranteed. This holds for the triangle as well as for the
polygonal case. To our knowledge this is the first algorithm
to introduce a geometry aware flip-free parameterization tech-
nique for polygon meshes.

7. Discussion

Our approach provides a perfect Laplace operator for any
input mesh, albeit at the cost of potentially moving the ver-
tices. In the following, we briefly discuss the consequences,
particularly in light of related approaches.

7.1. Modifying combinatorics

If triangle meshes with convex boundary are Delaunay, all
triangle angles are smaller than 7t/2 and the cotan-operator is
non-negative. An interesting theorem due to Rippa [Rip90]
states that general planar triangle meshes can be turned into
Delaunay triangulations by incrementally flipping edges vi-
olating the Delaunay property. Bobenko and Springborn
[BSO7] construct perfect Laplacians for triangle meshes em-
bedded in R by generalizing this theorem using intrinsic
edge flips, i.e., they flip edges only for the generation of the
Laplace operator—the operator may still be applied to the
original mesh. Although these algorithm are guaranteed to
terminate, it might take up to [V|? edge flips [Ede01]. Perhaps
more importantly, in some applications it might be important
to fix combinatorics, such as for different vertex geometries
that represent different instances of a mesh. In a sense both
approaches are related: they apply an operator derived from
different underlying combinatorics, while we may apply an
operator derived from different geometry; so in both cases
the Laplace operator was derived from a metric that is incon-
sistent with the input.
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7.2. Modifying geometry

The work of Mullen et al. [MMdGD11] is similar in spirit
to ours. Using non-linear optimization, they search for a
weighted cotan-Laplacian exhibiting good numerical behav-
ior and mostly non-negative weights. Optionally, vertex posi-
tions are optimized as well. Although non-negativity is not im-
plied, the results are impressive and can significantly improve
the accuracy of computations involving the discrete Laplacian.
By contrast, our approach guarantees non-negativity and, per-
haps more importantly, generalizes to polygonal meshes. We
also think it is conceptually simpler and offers a more straight
forward implementation.

7.3. Using diagonals

As mentioned earlier, Alexa and Wardetzky [AW11] implic-
itly consider all diagonals in a face. Interestingly, while this
improves flexibility and makes it easier to generate non-
negative Laplacians, their construction equally uses all diago-
nals, resulting in negative coefficients for almost all faces.

A downside of our approach is that using only the original
edges, a perfect Laplacian requires convex faces. We could
use all diagonals in our construction but at the expense of
being able to guarantee an embedding in the planar case.
This might be acceptable especially for the practical case
of meshes in R®. In fact, we have experimented with using
diagonals and the results look reasonable.

There is, however, a good reason for avoiding diagonals
also in the case of meshes in R*: in a non-planar face, posi-
tive Laplace coefficients for the diagonals imply that the area
gradient flow would reduce the area by folding the polygon
rather than making it planar (as desired). This suggests that
the choice of a Laplace operator may be application depen-
dent.
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