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e Much more

Why Mesh Laplacian®

o (Geometry processing = (LV)Z — E W, °(V' _ Vz‘)
Applying Laplacian to geometry JATT

» Smoothing /fairing V' =V + \LV

e Parameterization LV’ = 0

e Deformation LV/ ~ LV
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Vlesnh Laplacian - Properties
o Locality <Lu)z — Z Wij (uj o UZ)

 Smooth Laplacian is local

o Efficiency
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Vlesnh Laplacian - Properties

» Constants in kernel
o Laplacian is differential operator

e |nvariance to translation

o Affinely independent




Vlesnh Laplacian - Properties

e Linear precision

e Second order differences
vanish on linear functions
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Mesh Laplacian - Linear precision

.« L(col + c1x+cy) =0

- (1,x,y) span linear functions

e [ake vertex coordinates

L0, Yo Vg ,
(X,Y) — L1,Y1 — V-lr — V ::




e Linear precision

Vlesnh Laplacian - Properties

e Second order differences
vanish on linear functions

* |dentity for parameterizing flat
meshes with LV’ = 0




Mesh Laplacian - Linear precision

\§;

* [angential component vanishes!
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Mesh Laplacian - Linear precision
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* Orthogonal dual cells close!



Mesh Laplacian - Non-negativity

* Orthogonal dual cells close!
* Negative coefficients
e orthogonal dual not embedded

 No maximum principle!




Mesh Laplacian - Perfect
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* | ocal, affine independence:
by construction
¢ Symmetry: wm — wﬁ '

» Non-negative: w;; > 0

e Linear precision: LV = 0
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(1,J)€EE
e \ertices connected by springs '

+ Hooks law: f;; = w;;(v; — v;)
* Wj4Is the spring constant

» w;; > 0 spring is pulling



Viesn Laplacian - Force netvvork
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e \ertices connected by springs '

* Linear precision: forces sum to zero

e [Force network is in equilibrium



Vlesnh Laplacian - Force netvvork

(LV)’L — Z wzg — Vz
(2,7)€EE

* Perfect Laplacian =

* Non-negative spring constants

e \ertices are in equilibrium



Mesh Laplacian - Force network

?
» Equilibrium: V' = {w;,; }
 Mapping not unique

* Glickenstein Laplace /
Weighted Delaunay




Mesh Laplacian - Force network

I
» Equilibrium: V. — {w;; > 0}

 Mapping may not exist

e No free lunch theorem
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» Equilibrium: {w;; > 0} — Vg
* FIX boundary

e Solve LV =0

* Unique embedding (Tutte)
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« Adjust wj;untl Vo =V

¢ Set Wij > 0

e Compute equilibrium: LV = 0

o Laplacian is intrinsic:
Just check edge lengths!
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Mesh Laplacian - Algorithm

 Adjust wi; untl Vg =V

¢ Set Wij > 0
e Compute equilibrium: LV = 0
* Edge too short: loosen spring

 Edge too long: tighten spring




* Until convergence

Mesh Laplacian - Algorithm

« Adjust wj;untl Vo =V

¢ Set Wij > 0
e Compute equilibrium: LV = 0

* Adjust springs
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Mesh Laplacian - Algorithm

e Adjusting spring constant wij

e (Scalar) force on current edge:

fij = wz‘jHV? — V?H

e Spring constant for desired edge
length: f,
1]
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Mesh Laplacian - Algorithm

Adjusting spring constants

Important detall: LVg = 0= uLVqg =0

Better update rule:

T HT,
J

[vi = vi'l

— vy

Set >0 st Z wi; = 1
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Properties of algorithm: convergence?

Spring Energy

0.0014 ¢
0.0012
0.0010
0.0008
0.0006
0.0004

0.0002




Properties of algorithm: non-negativity!
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Properties of algorithm: non-negativity!

Tutte embedding
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Properties of algorithm: non-negativity!
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Properties of algorithm: steady state
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Properties of algorithm: steady state

V20
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Wij > 0
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constant factor for all edges
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Properties of algorithm: steady state

* Three types of edges

1. Boundary

2. Scaled by a constant factor ,u_l <1
Positive coefficient w;; > 0

3. Too short, varying factor < T

Zero coefficient w;; = 0




Properties of algorithm: Laplacian

o Selects the subset of edges that

e can be embedded with positive
coefficients w;; > 0

e SO that edge lengths are
preserved up to global scale




Properties of algorithm: polygonall

 \Works for any (planar) three-
connected graph




Properties of algorithm: polygonall

e No free lunch theorem for
polygon meshes

e Same as triangles: “regular
subdivisions” (= power
diagrams)




Properties of algorithm: polygonall
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Application: self-supporting surface
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Application: self-supporting surface




3D Mesh Laplacian
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3D Mesh Laplacian

* Recall LV =0

e All vertices flat

* |nstead (LVQ)Z — HZ‘IIZ'
» Take area gradient for H,n;

o Other variants are possible

lteration: 1
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* FIX boundary in the plane
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» w;; = U guarantees no flippeo
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Mesh parameterization
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* FIX boundary in the plane —

e Solve LV — O

» w;; = 0 guarantees no flipped
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Mesh parameterization

* FIX boundary in the plane

¢ Solve LV — O
* w;; < 0 flips may occur

o Wardetzky & co-worker

|
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Perfect Laplacians for Polygon Meshes

 With diagonals

» Can be refined into a regular
subdivision

e [here are reasons Nnot to use
diagonals




Take home message: Compute pertect Laplacians

e (Given a polygon mesh

* Provides perfect Laplacian if possible

* Otherwise compromises on linear
porecision
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* Finds a subset that admits perfect
_aplacian
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* Other edges receive zero weight

 May use diagonals in faces

* Open: constraints for meshes in 3d



