Perfect Laplacians
for
Polygon Meshes

Phillip Herholz, Jan Eric Kyprianidis, Marc Alexa
TU Berlin

What is a Mesh Laplacian®

» Second order difference operator

What is a Mesh Laplacian®

» Second order difference operator

e Defined over mesh

 Mapping

e from values at vertices

What is a Mesh Laplacian®

» Second order difference operator

e Defined over mesh

 Mapping
e from values at vertices H

I
| | | I
| I | | | | | | | | | | I
I | || | | I I I I I | | |
| I | | | I | | | | | | I
e S

e t0 values at vertices

Mesh Laplacian - A common choice

Lu)i= 3wy —u)
(4,7)EE /M
g =

Mesh Laplacian - A common choice

Mesh Laplacian - A common choice

Mesh Laplacian - A common choice

Mesh Laplacian - A common choice

Mesh Laplacian - A common choice

Mesh Laplacian - A common choice

Why Mesh Laplacian®

o (Geometry processing = T.u), = Z (U — U
Applying Laplacian ()”’ ’LJ(J Z)
(1,J)€EE
A

an?
an’
esn Laplacl
\Yi
Whny

‘ [E—— Z‘)
Applying Lap - - L\ E : “’ij(bj '°
. . E E
. r
'L aplac Itogeo etry
. lacia
Geo |
| lying

Why Mesh Laplacian®

o (Geometry processing = (LV) .
Applying Laplacian to geometry ¢

» Smoothing /fairing V' =V + \LV

u
1\
3
Q.
<
<

Why Mesh Laplacian®

o (Geometry processing = (LV) .
Applying Laplacian to geometry ¢

» Smoothing /fairing V' =V + \LV

e Parameterization LV’ = 0

H
1\
3
<.
<
<

Why Mesh Laplacian®

o (Geometry processing = (LV) .
Applying Laplacian to geometry ¢

» Smoothing /fairing V' =V + \LV

e Parameterization LV’ = 0

e Deformation LV/ ~ LV)
~

u
1\
3
Q.
<
<

Why Mesh Laplacian®

o (Geometry processing = (LV) .
Applying Laplacian to geometry ¢

» Smoothing /fairing V' =V + \LV

e Parameterization LV’ = 0

e Deformation LV/ ~ LV)
~

e Simulation / Animation

u
i\
3
Q.
<
-

e Much more

Why Mesh Laplacian®

o (Geometry processing = (LV)Z — E W, °(V' _ Vz‘)
Applying Laplacian to geometry JATT

» Smoothing /fairing V' =V + \LV

e Parameterization LV’ = 0

e Deformation LV/ ~ LV

| -

e Simulation / Animation

—
— — —
— — ——
— ——

Vlesnh Laplacian - Properties
/ ‘
Z

e |ocality
 Smooth Laplacian i

e Efficien

Vlesnh Laplacian - Properties
o Locality <Lu)z — Z Wij (uj o UZ)

 Smooth Laplacian is local

o Efficiency

Vlesnh Laplacian - Properties

* Symmetry

 Smooth Laplacian is symmetric

» Real spectrum, orthogonal Eigens

Vlesnh Laplacian - Properties

* Symmetry

 Smooth Laplacian is symmetric

* Real spectrum, orthogonal Eigenspace

,'

N

Vlesnh Laplacian - Properties
(Lu); = Z wij (U — ;)

* Symmetry wZ] — w]@

 Smooth Laplacian is symmetric

* Real spectrum, orthogonal Eigenspace

N

‘ l' “ o
': éA <<\

N

Vlesnh Laplacian - Properties

e Constants in kernel

o Laplacian is differential operator

+ Invariance to translation ” /&7 V

Vlesnh Laplacian - Properties

e Constants in kernel

o Laplacian is differential operator

. ttw

Vlesnh Laplacian - Properties

» Constants in kernel
o Laplacian is differential operator

e |nvariance to translation

o Affinely independent

Vlesnh Laplacian - Properties

e Linear precision

e Second order differences
vanish on linear functions

Vs

"/

/

Mesh Laplacian - Linear precision

.« L(col + c1x+cy) =0

- (1,x,y) span linear functions

Mesh Laplacian - Linear precision

.« L(col + c1x+cy) =0

- (1,x,y) span linear functions

e [ake vertex coordinates

L0, Yo Vg ,
(X,Y) — L1,Y1 — V-lr — V ::

e Linear precision

Vlesnh Laplacian - Properties

e Second order differences
vanish on linear functions

* |dentity for parameterizing flat
meshes with LV’ = 0

Mesh Laplacian - Linear precision

\§;

* [angential component vanishes!

Mesh Laplacian - Linear precision

Mesh Laplacian - Linear precision

vV

* Orthogonal dual cells close!

Mesh Laplacian - Non-negativity

* Orthogonal dual cells close!
* Negative coefficients
e orthogonal dual not embedded

 No maximum principle!

Mesh Laplacian - Perfect

(LV)’L — E UJ@J o V’L
(1,J)€EE
* | ocal, affine independence:
by construction
¢ Symmetry: wm — wﬁ '

» Non-negative: w;; > 0

e Linear precision: LV = 0

Viesn Laplacian -orce netvvork

(t,7)eE
e \ertices connected by springs '

Viesn Laplacian -orce netvvork

(1,J)€EE
e \ertices connected by springs '

+ Hooks law: f;; = w;;(v; — v;)
* Wj4Is the spring constant

» w;; > 0 spring is pulling

Viesn Laplacian - Force netvvork

(1,J)€EE
e \ertices connected by springs '

* Linear precision: forces sum to zero

e [Force network is in equilibrium

Vlesnh Laplacian - Force netvvork

(LV)’L — Z wzg — Vz
(2,7)€EE

* Perfect Laplacian =

* Non-negative spring constants

e \ertices are in equilibrium

Mesh Laplacian - Force network

?
» Equilibrium: V' = {w;,; }
 Mapping not unique

* Glickenstein Laplace /
Weighted Delaunay

Mesh Laplacian - Force network

I
» Equilibrium: V. — {w;; > 0}

 Mapping may not exist

e No free lunch theorem

Mesh Laplacian - Force network

» Equilibrium: {w;,;} — Vg

Mesh Laplacian - Force network

» Equilibrium: {w;,;} — Vg

* FIX boundary

Mesh Laplacian - Force network

» Equilibrium: {w;,;} — Vg

* FIX boundary

e Solve LV =0

* Unique

Mesh Laplacian - Force network

» Equilibrium: {w;; > 0} — Vg

* FIX boundary

e Solve LV =0

* Unique embedding (Tutte)

Mesh Laplacian - Force network

» Equilibrium: {w;; > 0} — Vg
* FIX boundary

e Solve LV =0

* Unique embedding (Tutte)

Mesh Laplacian - Algorithm

« Adjust wj;untl Vo =V

Mesh Laplacian - Algorithm

« Adjust wj;untl Vo =V

¢ Set Wij > 0

e Compute equilibrium: LV = 0

Mesh Laplacian - Algorithm

« Adjust wj;untl Vo =V

¢ Set Wij > 0

e Compute equilibrium: LV = 0

o Laplacian is intrinsic:
Just check edge lengths!

e Set w;; >0

Mesh Laplacian - Algorithm

» Adjust w;;j until Vo =

Compute equilibrium: LV = 0

* Edge too short: loosen spring '

Mesh Laplacian - Algorithm
KL
e

» Adjust w;;j until Vo =

¢ Set Wij > 0

e Compute equilibrium: LV =0

 Edge too short: loosen spring

 Edge too long: tighten spring

Mesh Laplacian - Algorithm

 Adjust wi; untl Vg =V

¢ Set Wij > 0
e Compute equilibrium: LV = 0
* Edge too short: loosen spring

 Edge too long: tighten spring

* Until convergence

Mesh Laplacian - Algorithm

« Adjust wj;untl Vo =V

¢ Set Wij > 0
e Compute equilibrium: LV = 0

* Adjust springs

Mesh Laplacian - Algorithm

e Adjusting spring constant wij

Mesh Laplacian - Algorithm

e Adjusting spring constant wij

e (Scalar) force on current edge:

fij = wz‘jHV? — V?H

Mesh Laplacian - Algorithm

e Adjusting spring constant wij

e (Scalar) force on current edge:

fij = wz‘jHV? — V?H

e Assume force I1s constant

Mesh Laplacian - Algorithm

e Adjusting spring constant wij

e (Scalar) force on current edge:

fij = wz‘jHV? — V?H

e Spring constant for desired edge
length: f,
1]

A

v =il

Mesh Laplacian - Algorithm

e Adjusting spring constants

e Update rul
pdate rule V2 0
/ 7 (

ij — YUy — v
¥, (/

W

Mesh Laplacian - Algorithm

e Adjusting spring constants

e Update rul
pdate rule V2 0
/ 7 (

ij — YUy — v
¥, (/

W

Mesh Laplacian - Algorithm

e Adjusting spring constants

e Update rul
pdate rule V2 0
/ 7 (

ij — YUy — v
¥, (/

W

Mesh Laplacian - Algorithm

e Adjusting spring constants

e Update rul
pdate rule V2 0
/ 7 (

ij — YUy — v
¥, (/

W

Mesh Laplacian - Algorithm

e Adjusting spring constants

* Important detaill: LVqg =0 = uLVqg =0

Mesh Laplacian - Algorithm

Adjusting spring constants

Important detall: LVg = 0= uLVqg =0

Better update rule:

T HT,
J

[vi = vi'l

— vy

Choose u > 0

Mesh Laplacian - Algorithm

Adjusting spring constants

Important detall: LVg = 0= uLVqg =0

Better update rule:

T HT,
J

[vi = vi'l

— vy

Set >0 st Z wi; = 1

(4,5)€E

Properties of algorithm: convergence?

K

Tteration: 1/, / ""tt‘eration:f‘

lteration: 1

Properties of algorithm: convergence?

Spring Energy

0.0014 ¢
0.0012
0.0010
0.0008
0.0006
0.0004

0.0002

Properties of algorithm: non-negativity!

, V. —V
ij — MHWij

Vj—Vi

Properties of algorithm: non-negativity!

wz-j>()

Properties of algorithm: non-negativity!

Tutte embedding

Q Q
vii—v; || >0

Properties of algorithm: non-negativity!

Vj—VZ‘ >O

Properties of algorithm: non-negativity!

Properties of algorithm: non-negativity!

Properties of algorithm: non-negativity!

> ()

Properties of algorithm: non-negativity!

> ()

Properties of algorithm: non-negativity!

> ()

Properties of algorithm: non-negativity!

w§f>0

o0
w;i; = (

Properties of algorithm: steady state

() ()

Vj—VZ'

Wij = K Wij

Properties of algorithm: steady state

V20
Wig — KW
V] - VZ
Wij > 0
() () —1

/

constant factor for all edges

Properties of algorithm: steady state

* Three types of edges

Properties of algorithm: steady state

* Three types of edges

1. Boundary

Properties of algorithm: steady state

* Three types of edges
1. Boundary

2. Scaled by a constant factor ,u_l <1
Positive coefficient w;; > 0

Properties of algorithm: steady state

* Three types of edges

1. Boundary

2. Scaled by a constant factor ,u_l <1
Positive coefficient w;; > 0

3. Too short, varying factor < T

Zero coefficient w;; = 0

Properties of algorithm: Laplacian

o Selects the subset of edges that

e can be embedded with positive
coefficients w;; > 0

e SO that edge lengths are
preserved up to global scale

Properties of algorithm: polygonall

 \Works for any (planar) three-
connected graph

Properties of algorithm: polygonall

e No free lunch theorem for
polygon meshes

e Same as triangles: “regular
subdivisions” (= power
diagrams)

Properties of algorithm: polygonall

N

Application: self-supporting surface

self-supporting surface

|ON

Applicat

- N
‘ik‘\

2
>

\

l\\

Application: self-supporting surface

3D Mesh Laplacian

* Recall LV =0

e All vertices flat

* |nstead (LVQ)Z — HZ‘IIZ'

» Take area gradient for H,n;

3D Mesh Laplacian

* Recall LV =0

e All vertices flat

* |nstead (LVQ)Z — HZ‘IIZ'

» Take area gradient for H,n;

lteration: 1

3D Mesh Laplacian

* Recall LV =0

e All vertices flat

* |nstead (LVQ)Z — HZ‘IIZ'
» Take area gradient for H,n;

o Other variants are possible

lteration: 1

VMesh parameterization

* FIX boundary in the plane

e Solve LV — O

» w;; = U guarantees no flippeo
faces

Mesh parameterization

\

* FIX boundary in the plane —

e Solve LV — O

» w;; = 0 guarantees no flipped

faces

)

Mesh parameterization

* FIX boundary in the plane

¢ Solve LV — O
* w;; < 0 flips may occur

o Wardetzky & co-worker

|

Non-zero coefficients on polygons

 Non-zero coefficients only on edges ‘
» No convex faces / T

A
Sl 7

Non-zero coefficients on polygons

* Non-zero coetfficients only on edges “ \
[P
* No convex faces //

Non-zero coefficients on polygons

 Non-zero coefficients only on edges } l
 NO convex faces /‘

\/
g

Non-zero coefficients on polygons

 Non-zero coefficients only on edges

e NoO convex faces

Non-zero coefficients on polygons

 Non-zero coefficients only on edges

e NoO convex faces

Non-zero coefficients on polygons

 Wardetzky & co-worker: .
all diagonals

Non-zero coefficients on polygons

 Wardetzky & co-worker: .
all diagonals

hk

Non-zero coefficients on polygons

%
XS

o Wardetzky & co-worker:
all diagonals

h‘A\

N
y

oo [\
NG
XY

i
AN

Non-zero coefficients on polygons

o Wardetzky & co-worker: ‘
all dlagonals w
o Considering all diagonals / O

 Non-convex faces possible ‘
 No guarantee for embedding

Non-zero coefficients on polygons

o Wardetzky & co-worker: I ‘\
all diagonals ‘ \
o Considering all diagonals)\

 Non-convex faces possible \ (

 No guarantee for embedding v

Non-zero coefficients on polygons

o Wardetzky & co-worker:
all diagonals

o Considering all diagonals
 Non-convex faces possible

 No guarantee for embedding

\
g

S
X/

~]

A

i

y

Non-zero coefficients on polygons

o Wardetzky & co-worker: \ ‘A
all diagonals 7
» Considering all diagonals /

* Non-convex faces possible ’
 No guarantee for embedding

Non-zero coefficients on polygons

o Wardetzky & co-worker: > ‘ \
all diagonals

o Considering all diagonals /

 Non-convex faces possible ’

 No guarantee for embedding

7
=~V

Perfect Laplacians for Polygon Meshes

* Without diagonals

* Weakly regular subdivision

Perfect Laplacian”

Perfect Laplacians for Polygon Meshes

* Without diagonals

* Weakly regular subdivision

e A subset of the mesh is a
regular subdivision

Perfect Laplacian!

Perfect Laplacians for Polygon Meshes

%
2N

 Without diagonals
* Weakly regular subdivision

e A subset of the mesh is a
regular subdivision

No Pertect Laplacian!

Perfect Laplacians for Polygon Meshes

 With diagonals

» Can be refined into a regular
subdivision

Perfect Laplacian®

Perfect Laplacians for Polygon Meshes

 With diagonals

» Can be refined into a regular
subdivision

Perfect Laplacian!

Perfect Laplacians for Polygon Meshes

 With diagonals

» Can be refined into a regular

subdivision /\

Perfect Laplacians for Polygon Meshes

 With diagonals

» Can be refined into a regular
subdivision

Perfect Laplacians for Polygon Meshes

 With diagonals

» Can be refined into a regular
subdivision

e [here are reasons Nnot to use
diagonals

Take home message: Compute pertect Laplacians

e (Given a polygon mesh

* Provides perfect Laplacian if possible

* Otherwise compromises on linear
porecision

AN
%V

5

-
S
(‘\V

* Finds a subset that admits perfect
_aplacian

RS
NSO
SU;
PR
Aﬂ“‘

e
Av‘
2
W
A
N

A
AA‘\
i
W
VKR

"A,é
i

* Other edges receive zero weight

 May use diagonals in faces

* Open: constraints for meshes in 3d

