Perfect Laplacians for Polygon Meshes

Phillip Herholz, Jan Eric Kyprianidis, Marc Alexa TU Berlin

What is a Mesh Laplacian?

- Second order difference operator
- Defined over mesh

What is a Mesh Laplacian?

- Second order difference operator
- Defined over mesh
- Mapping
 - from values at vertices

What is a Mesh Laplacian?

- Second order difference operator
- Defined over mesh
- Mapping
 - from values at vertices
 - to values at vertices

$$(\mathbf{L}\mathbf{u})_i = \sum_{(i,j)\in E} \omega_{ij}(u_j - u_i)$$

$$(\mathbf{L}\mathbf{u})_i = \sum_{(i,j)\in E} \omega_{ij}(u_j - u_i)$$

$$(\mathbf{L}\mathbf{u})_i = \sum_{(i,j)\in E} \omega_{ij} (u_j - u_i)$$

$$(\mathbf{L}\mathbf{u})_i = \sum_{(i,j)\in E} \omega_{ij} (u_j - u_i)$$

$$(\mathbf{L}\mathbf{u})_i = \sum_{(i,j)\in E} \omega_{ij}(u_j - u_i)$$

 Geometry processing = Applying Laplacian

$$(\mathbf{L}\mathbf{u})_i = \sum_{(i,j)\in E} \omega_{ij}(u_j - u_i)$$

 Geometry processing = Applying Laplacian to geometry

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

 Geometry processing = Applying Laplacian to geometry

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij}(\mathbf{v}_j - \mathbf{v}_i)$$

• Smoothing / fairing $\, {f V}' = {f V} + \lambda {f L} {f V} \,$

 Geometry processing = Applying Laplacian to geometry

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Smoothing / fairing $\, {f V}' = {f V} + \lambda {f L} {f V} \,$
- Parameterization $\mathbf{L}\mathbf{V}'=\mathbf{0}$

- Geometry processing =
 Applying Laplacian to geometry
- $(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j \mathbf{v}_i)$
- Smoothing / fairing $\mathbf{V}' = \mathbf{V} + \lambda \mathbf{L} \mathbf{V}$
- Parameterization $\mathbf{L}\mathbf{V}' = \mathbf{0}$
- Deformation $\mathbf{L}\mathbf{V}' pprox \mathbf{L}\mathbf{V}$

- Geometry processing =
 Applying Laplacian to geometry
- $(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij}(\mathbf{v}_j \mathbf{v}_i)$
- Smoothing / fairing $\mathbf{V}' = \mathbf{V} + \lambda \mathbf{L} \mathbf{V}$
- Parameterization $\mathbf{L}\mathbf{V}' = \mathbf{0}$
- Deformation $\mathbf{LV}' pprox \mathbf{LV}'$
- Simulation / Animation

- Geometry processing =
 Applying Laplacian to geometry
- $(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j \mathbf{v}_i)$
- Smoothing / fairing $\mathbf{V}' = \mathbf{V} + \lambda \mathbf{L} \mathbf{V}$
- Parameterization $\mathbf{L}\mathbf{V}' = \mathbf{0}$
- Deformation $\mathbf{LV}' pprox \mathbf{LV}'$
- Simulation / Animation
- Much more

- Locality
 - Smooth Laplacian is local
 - Efficiency

- Locality
 - Smooth Laplacian is local
 - Efficiency

$$(\mathbf{L}\mathbf{u})_i = \sum_{(i,j)\in E} \omega_{ij}(u_j - u_i)$$

- Symmetry
 - Smooth Laplacian is symmetric

- Symmetry
 - Smooth Laplacian is symmetric
- $(\mathbf{L}\mathbf{u})_i = \sum_{(i,j)\in E} \omega_{ij}(u_j u_i)$

- Symmetry $\omega_{ij} = \omega_{ji}$
- $(\mathbf{L}\mathbf{u})_i = \sum \omega_{ij}(u_j u_i)$ $(i,j) \in E$
 - Smooth Laplacian is symmetric

- Constants in kernel
 - Laplacian is differential operator

 $(\mathbf{L}\mathbf{u})_i = \sum_{i=1}^n \omega_{ij}(u_j - u_i)$

 $(i,j) \in E$

- Constants in kernel
 - Laplacian is differential operator
 - Invariance to translation

 $(\mathbf{L}\mathbf{V})_i = \sum \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$

 $(i,j) \in E$

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Laplacian is differential operator
- Invariance to translation
- Affinely independent

- Linear precision
 - Second order differences vanish on linear functions

- $\mathbf{L}(c_0\mathbf{1} + c_1\mathbf{x} + c_2\mathbf{y}) = \mathbf{0}$
- (1, x, y) span linear functions

•
$$\mathbf{L}(c_0\mathbf{1} + c_1\mathbf{x} + c_2\mathbf{y}) = \mathbf{0}$$

- (1, x, y) span linear functions
- Take vertex coordinates

$$(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} x_0, y_0 \\ x_1, y_1 \\ \vdots \end{pmatrix} = \begin{pmatrix} \mathbf{v}_0^\mathsf{T} \\ \mathbf{v}_1^\mathsf{T} \\ \vdots \end{pmatrix} = \mathbf{V}$$

- Linear precision
 - Second order differences vanish on linear functions
 - Identity for parameterizing flat meshes with $\mathbf{L}\mathbf{V}'=\mathbf{0}$

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

$$LV = 0$$

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij}(\mathbf{v}_j - \mathbf{v}_i)$$

Tangential component vanishes!

$$LV = 0$$

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

$$LV = 0$$

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

Orthogonal dual cells close!

Mesh Laplacian - Non-negativity

- Orthogonal dual cells close!
- Negative coefficients
 - orthogonal dual not embedded
 - No maximum principle!

Mesh Laplacian - Perfect

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Local, affine independence: by construction
- Symmetry: $\omega_{ij} = \omega_{ji}$
- Non-negative: $\omega_{ij} \geq 0$
- Linear precision: LV=0

Mesh Laplacian - Force network

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Vertices connected by springs
- Hooks law: $\mathbf{f}_{ij} = \omega_{ij} (\mathbf{v}_j \mathbf{v}_i)$

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Vertices connected by springs
- Hooks law: $\mathbf{f}_{ij} = \omega_{ij} (\mathbf{v}_j \mathbf{v}_i)$
- ω_{ij} is the spring constant
 - $\omega_{ij}>0$ spring is pulling

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Vertices connected by springs
- Hooks law: $\mathbf{f}_{ij} = \omega_{ij} (\mathbf{v}_j \mathbf{v}_i)$
- Linear precision: forces sum to zero
 - Force network is in equilibrium

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Perfect Laplacian =
 - Non-negative spring constants
 - Vertices are in equilibrium

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Equilibrium: $\mathbf{V} \overset{?}{ o} \{\omega_{ij}\}$
- Mapping not unique
 - Glickenstein Laplace / Weighted Delaunay

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij}(\mathbf{v}_j - \mathbf{v}_i)$$

- Equilibrium: $\mathbf{V} \stackrel{?}{\rightarrow} \{\omega_{ij} \geq 0\}$
- Mapping may not exist
 - No free lunch theorem

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

• Equilibrium: $\{\omega_{ij}\} o \mathbf{V}_{\Omega}$

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Equilibrium: $\{\omega_{ij}\} o \mathbf{V}_{\Omega}$
 - Fix boundary

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Equilibrium: $\{\omega_{ij}\} o \mathbf{V}_{\Omega}$
 - Fix boundary
 - Solve $\mathbf{LV} = \mathbf{0}$
 - Unique

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Equilibrium: $\{\omega_{ij} \geq 0\} \to \mathbf{V}_{\Omega}$
 - Fix boundary
 - Solve $\mathbf{LV} = \mathbf{0}$
 - Unique embedding (Tutte)

$$(\mathbf{LV})_i = \sum_{(i,j)\in E} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

- Equilibrium: $\{\omega_{ij} \geq 0\} \to \mathbf{V}_{\Omega}$
 - Fix boundary
 - Solve $\mathbf{LV} = \mathbf{0}$
 - Unique embedding (Tutte)

• Adjust ω_{ij} until $\mathbf{V}_{\Omega} = \mathbf{V}$

- Adjust ω_{ij} until $\mathbf{V}_{\Omega} = \mathbf{V}$
- Set $\omega_{ij} > 0$
 - Compute equilibrium: $\mathbf{L}\mathbf{V}_{\Omega}=\mathbf{0}$

$$\omega_{ij} = 1$$

- Adjust ω_{ij} until $\mathbf{V}_{\Omega} = \mathbf{V}$
- Set $\omega_{ij} > 0$
 - Compute equilibrium: $\mathbf{L}\mathbf{V}_{\Omega}=\mathbf{0}$
 - Laplacian is intrinsic:
 Just check edge lengths!

- Adjust ω_{ij} until $\mathbf{V}_{\Omega} = \mathbf{V}$
- Set $\omega_{ij} > 0$
 - Compute equilibrium: $\mathbf{L}\mathbf{V}_{\Omega}=\mathbf{0}$
 - Edge too short: loosen spring

- Adjust ω_{ij} until $\mathbf{V}_{\Omega} = \mathbf{V}$
- Set $\omega_{ij} > 0$
 - Compute equilibrium: $\mathbf{L}\mathbf{V}_{\Omega}=\mathbf{0}$
 - Edge too short: loosen spring
 - Edge too long: tighten spring

- Adjust ω_{ij} until $\mathbf{V}_{\Omega} = \mathbf{V}$
- Set $\omega_{ij} > 0$
 - Compute equilibrium: $\mathbf{L}\mathbf{V}_{\Omega}=\mathbf{0}$
 - Edge too short: loosen spring
 - Edge too long: tighten spring

- Adjust ω_{ij} until $\mathbf{V}_{\Omega} = \mathbf{V}$
- Set $\omega_{ij} > 0$
 - Compute equilibrium: $\mathbf{L}\mathbf{V}_{\Omega}=\mathbf{0}$
 - Adjust springs
- Until convergence

• Adjusting spring constant ω_{ij}

- Adjusting spring constant ω_{ij}
 - (Scalar) force on current edge:

$$f_{ij} = \omega_{ij} \| \mathbf{v}_j^{\Omega} - \mathbf{v}_i^{\Omega} \|$$

- Adjusting spring constant ω_{ij}
 - (Scalar) force on current edge:

$$f_{ij} = \omega_{ij} \| \mathbf{v}_j^{\Omega} - \mathbf{v}_i^{\Omega} \|$$

Assume force is constant

- Adjusting spring constant ω_{ij}
 - (Scalar) force on current edge:

$$f_{ij} = \omega_{ij} \| \mathbf{v}_j^{\Omega} - \mathbf{v}_i^{\Omega} \|$$

Spring constant for desired edge length:

$$\omega'_{ij} = \frac{f_{ij}}{\|\mathbf{v}_j - \mathbf{v}_i\|}$$

- Adjusting spring constants

• Update rule
$$\omega_{ij}' = \omega_{ij} \frac{\|\mathbf{v}_j^\Omega - \mathbf{v}_i^\Omega\|}{\|\mathbf{v}_j - \mathbf{v}_i\|}$$

- Adjusting spring constants

• Update rule
$$\omega_{ij}' = \omega_{ij} \frac{\|\mathbf{v}_j^\Omega - \mathbf{v}_i^\Omega\|}{\|\mathbf{v}_j - \mathbf{v}_i\|}$$

- Adjusting spring constants

• Update rule
$$\omega_{ij}' = \omega_{ij} \frac{\|\mathbf{v}_j^\Omega - \mathbf{v}_i^\Omega\|}{\|\mathbf{v}_j - \mathbf{v}_i\|}$$

- Adjusting spring constants

• Update rule
$$\omega_{ij}' = \omega_{ij} \frac{\|\mathbf{v}_j^\Omega - \mathbf{v}_i^\Omega\|}{\|\mathbf{v}_j - \mathbf{v}_i\|}$$

- Adjusting spring constants
- Important detail: $\mathbf{L}\mathbf{V}_{\Omega}=0\Rightarrow \mu\mathbf{L}\mathbf{V}_{\Omega}=0$

- Adjusting spring constants
- Important detail: $\mathbf{L}\mathbf{V}_{\Omega}=0\Rightarrow \mu\mathbf{L}\mathbf{V}_{\Omega}=0$
- Better update rule:

$$\omega_{ij}' = \mu \ \omega_{ij} \frac{\|\mathbf{v}_{j}^{\Omega} - \mathbf{v}_{i}^{\Omega}\|}{\|\mathbf{v}_{j} - \mathbf{v}_{i}\|}$$

• Choose $\mu > 0$

- Adjusting spring constants
- Important detail: $\mathbf{L}\mathbf{V}_{\Omega}=0\Rightarrow \mu\mathbf{L}\mathbf{V}_{\Omega}=0$

• Better update rule:
$$\omega_{ij}' = \mu \; \omega_{ij} \frac{\|\mathbf{v}_j^\Omega - \mathbf{v}_i^\Omega\|}{\|\mathbf{v}_j - \mathbf{v}_i\|}$$

• Set $\mu > 0$ s.t. $\sum \omega'_{ij} = 1$ $(i,j) \in E$

Properties of algorithm: convergence?

Properties of algorithm: convergence?

$$\omega'_{ij} = \mu \omega_{ij} \frac{\|\mathbf{v}_j^{32} - \mathbf{v}_i^{32}\|}{\|\mathbf{v}_j - \mathbf{v}_i\|}$$

$$\omega_{ij}' = \mu \omega_{ij} rac{\left\|\mathbf{v}_{i}^{\lambda \lambda} - \mathbf{v}_{i}^{\lambda \lambda} \right\|}{\left\|\mathbf{v}_{j} - \mathbf{v}_{i} \right\|}$$

Tutte embedding

$$\omega'_{ij} = \mu \omega_{ij} \frac{\|\mathbf{v}_j^{\Omega} - \mathbf{v}_i^{\Omega}\|}{\|\mathbf{v}_j - \mathbf{v}_i\|} > 0$$

$$\omega'_{ij} = \mu \omega_{ij} \frac{\|\mathbf{v}_j^{\Omega} - \mathbf{v}_i^{\Omega}\|}{\|\mathbf{v}_j - \mathbf{v}_i\|} > 0$$

$$\omega'_{ij} = \mu \omega_{ij} \frac{\left\|\mathbf{v}_{j}^{2} - \mathbf{v}_{i}^{2}\right\|}{\left\|\mathbf{v}_{j} - \mathbf{v}_{i}\right\|}$$

$$\omega'_{ij} > 0 \quad |\omega_{ij}| \frac{\|\mathbf{v}_{j}^{\Omega} - \mathbf{v}_{i}^{\Omega}\|}{\|\mathbf{v}_{j} - \mathbf{v}_{i}\|}$$

$$\omega'_{ij} > \bigoplus \mu \omega_{ij} \frac{\|\mathbf{v}_{j}^{\Omega} - \mathbf{v}_{i}^{\Omega}\|}{\|\mathbf{v}_{j} - \mathbf{v}_{i}\|}$$

$$\omega'_{ij} > \oplus \mu \omega_{ij} \frac{\|\mathbf{v}_{j}^{\Omega} - \mathbf{v}_{i}^{\Omega}\|}{\|\mathbf{v}_{j} - \mathbf{v}_{i}\|}$$

$$\omega'_{ij} > \oplus \mu \omega_{ij} \frac{\|\mathbf{v}_{j}^{\Omega} - \mathbf{v}_{i}^{\Omega}\|}{\|\mathbf{v}_{j} - \mathbf{v}_{i}\|}$$

$$\omega_{ij}^{\infty} > 0$$

$$\omega_{ij}^{\infty} = 0$$

$$\omega_{ij} = \mu \ \omega_{ij} \frac{\|\mathbf{v}_{j}^{\Omega} - \mathbf{v}_{i}^{\Omega}\|}{\|\mathbf{v}_{j} - \mathbf{v}_{i}\|}$$

$$\omega_{ij} = \mu \ \omega_{ij} \frac{\|\mathbf{v}_{j}^{\Omega} - \mathbf{v}_{i}^{\Omega}\|}{\|\mathbf{v}_{j} - \mathbf{v}_{i}\|}$$

$$\omega_{ij} > 0$$

$$\|\mathbf{v}_{j}^{\Omega} - \mathbf{v}_{i}^{\Omega}\| = \mu^{-1} \|\mathbf{v}_{j} - \mathbf{v}_{i}\|$$

constant factor for all edges

Three types of edges

- Three types of edges
- 1. Boundary

- Three types of edges
- 1. Boundary
- 2. Scaled by a constant factor $\mu^{-1} \leq 1$ Positive coefficient $\omega_{ij} > 0$

- Three types of edges
- 1. Boundary
- 2. Scaled by a constant factor $\mu^{-1} \leq 1$ Positive coefficient $\omega_{ij} > 0$
- 3. Too short, varying factor $\leq \mu^{-1}$ Zero coefficient $\omega_{ij} = 0$

Properties of algorithm: Laplacian

- Selects the subset of edges that
 - can be embedded with positive coefficients $\omega_{ij}>0$
 - so that edge lengths are preserved up to global scale

Properties of algorithm: polygonal!

 Works for any (planar) threeconnected graph

Properties of algorithm: polygonal!

- No free lunch theorem for polygon meshes
 - Same as triangles: "regular subdivisions" (= power diagrams)

Properties of algorithm: polygonal!

Application: self-supporting surface

Application: self-supporting surface

Application: self-supporting surface

3D Mesh Laplacian

- Recall $\mathbf{L}\mathbf{V}_{\Omega}=\mathbf{0}$
 - All vertices flat
- Instead $(\mathbf{L}\mathbf{V}_{\Omega})_i = H_i\mathbf{n}_i$
 - Take area gradient for $H_i\mathbf{n}_i$

3D Mesh Laplacian

- Recall $\mathbf{L}\mathbf{V}_{\Omega}=\mathbf{0}$
 - All vertices flat
- Instead $(\mathbf{L}\mathbf{V}_{\Omega})_i = H_i\mathbf{n}_i$
 - Take area gradient for $H_i\mathbf{n}_i$

3D Mesh Laplacian

- Recall $\mathbf{L}\mathbf{V}_{\Omega}=\mathbf{0}$
 - All vertices flat
- Instead $(\mathbf{L}\mathbf{V}_{\Omega})_i = H_i\mathbf{n}_i$
 - Take area gradient for $H_i\mathbf{n}_i$
- Other variants are possible

Iteration: 1

Mesh parameterization

- Fix boundary in the plane
- Solve LV = 0
- $\omega_{ij} \geq 0$ guarantees no flipped faces

Mesh parameterization

- Fix boundary in the plane
- Solve LV = 0
- $\omega_{ij} \geq 0$ guarantees no flipped faces

Mesh parameterization

- Fix boundary in the plane
- Solve LV = 0
- $\omega_{ij} < 0$ flips may occur
 - Wardetzky & co-worker

- Non-zero coefficients only on edges
 - No convex faces

- Non-zero coefficients only on edges
 - No convex faces

- Non-zero coefficients only on edges
 - No convex faces

- Non-zero coefficients only on edges
 - No convex faces

- Non-zero coefficients only on edges
 - No convex faces

- Wardetzky & co-worker: all diagonals
- Considering all diagonals
 - Non-convex faces possible
 - No guarantee for embedding

- Wardetzky & co-worker: all diagonals
- Considering all diagonals
 - Non-convex faces possible
 - No guarantee for embedding

- Wardetzky & co-worker: all diagonals
- Considering all diagonals
 - Non-convex faces possible
 - No guarantee for embedding

- Wardetzky & co-worker: all diagonals
- Considering all diagonals
 - Non-convex faces possible
 - No guarantee for embedding

- Wardetzky & co-worker: all diagonals
- Considering all diagonals
 - Non-convex faces possible
 - No guarantee for embedding

- Without diagonals
 - Weakly regular subdivision

Perfect Laplacian?

- Without diagonals
 - Weakly regular subdivision
 - A subset of the mesh is a regular subdivision

Perfect Laplacian!

- Without diagonals
 - Weakly regular subdivision
 - A subset of the mesh is a regular subdivision

- With diagonals
 - Can be refined into a regular subdivision

Perfect Laplacian?

- With diagonals
 - Can be refined into a regular subdivision

Perfect Laplacian!

- With diagonals
 - Can be refined into a regular subdivision

- With diagonals
 - Can be refined into a regular subdivision

- With diagonals
 - Can be refined into a regular subdivision

There are reasons not to use diagonals

Take home message: Compute perfect Laplacians

- Given a polygon mesh
- Provides perfect Laplacian if possible
- Otherwise compromises on linear precision
 - Finds a subset that admits perfect Laplacian
 - Other edges receive zero weight
 - May use diagonals in faces
- Open: constraints for meshes in 3d

