
Localized solutions of sparse linear systems for
geometry processing

Philipp Herholz, Timothy A. Davis, Marc Alexa

Linear solvers in geometry processing

• Many applications require repeated solutions of linear systems.

Discrete conformal parameterization

Ax = b

Discrete conformal parameterization

Ax = b

 is typically:

• sparse

• symmetric

• positive semi-definite

A

Cholesky factorization

Ax = b

 is typically:

• sparse

• symmetric

• positive semi-definite

A

Sparse Cholesky factorization can be applied!

Cholesky factorization

Ax = b

A L LTD= ⇥ ⇥

Cholesky factorization

Ax = b

LDL

T
x = b

Cholesky factorization

Ax = b

LDL

T
x|{z}

y

= b

LDy = b (1)Forward solve

L

T
x = y (2)Back solve

Cholesky factorization

Ax = b

LDL

T
x|{z}

y

= b

LDy = b (1)Forward solve

L

T
x = y (2)Back solve

Cholesky factorization

Ax = b

LDL

T
x|{z}

y

= b

y = b (1)Forward solve

x = y (2)Back solve

Local discrete conformal parameterization

Local discrete conformal parameterization

A1x1 = b1

Local discrete conformal parameterization

A1 = A()

A1x1 = b1

A1 = LDL

T

LDy = b1

L

T
x1 = y

Local discrete conformal parameterization

A1x1 = b1

A2x2 = b2

Local discrete conformal parameterization

A2x2 = b2

A1x1 = b1

A3x3 = b3

Local discrete conformal parameterization

A2x2 = b2

A1x1 = b1

A3x3 = b3 A4x4 = b4

• Idea: Reuse a global factorization:  
 
 
 

Contribution

A()= LDLT

Ax1 = b1

Ax2 = b2

Ax3 = b3
Ax4 = b4

• Question: Can we quickly compute subset of solution?

Contribution

A()= LDLT

Sparse solution vector x

 
 
 
 
 

• will generally be dense.

• Central insight: If we are interested in only a subset of values in we do  
not have to compute all values during the back solve!

Ax = b

LDL

T
x = b

LDy = b (1)Forward solve

L

T
x = y (2)Back solve

x

x

Sparse solution vector x

Sparse solution vector x

 
 
 
 
 
 
 
 

• How many values do we have to compute additionally?

• Can we identify them efficiently?

Sparse back-solve

Sparse back-solve

Sparse back-solve

Sparse back-solve

Sparse back-solve

Sparse back-solve

Sparse back-solve

Sparse back-solve

Sparse back-solve

Sparse back-solve

Nested dissection reordering
Input mesh Ordered Laplacian

Nested dissection reordering
Input mesh Ordered Laplacian

Nested dissection reordering
Input mesh Ordered Laplacian

Nested dissection reordering
Input mesh Ordered Laplacian

Nested dissection reordering
Input mesh Ordered Laplacian

Nested dissection reordering
Input matrix Cholesky factor

Nested dissection reordering
Cholesky factor Elimination tree

Nested dissection reordering
Input mesh Elimination tree

Nested dissection reordering
Input mesh Elimination tree

Nested dissection reordering
Input mesh Elimination tree

Nested dissection reordering
Input mesh Elimination tree

Nested dissection reordering
Input mesh Elimination tree

Nested dissection reordering
Input mesh Cholesky factor

Skip}

Applications: Parameterization

b

Is it worth it?

number of vertices

Refactorize and solve on submesh

Is it worth it?

no
n-

sp
ar

se
 so

lv
e

number of vertices

Refactorize and solve on submesh

Is it worth it?

no
n-

sp
ar

se
 so

lv
e

number of vertices

Refactorize and solve on submesh

Is it worth it?

no
n-

sp
ar

se
 so

lv
e

number of vertices

Refactorize and solve on submesh
386

Is it worth it?
non-sparse solve

sparse solve (our approach)
refactorize & solve

Amortization of factorization time

A1 = A()
A1 = LDL

T

LDy = b1

L

T
x1 = y

n⇥() vs
()A = A

A = LDLT

Amortization of factorization time

factorization
nested dissection + factorization

vertex fraction

tim
e

fra
ct

io
n

number of vertices

Amortization of factorization time

factorization
nested dissection + factorization

vertex fraction

tim
e

fra
ct

io
n

number of vertices

Limitations

• Only works if the requested values are local.

Limitations

• Only works if the requested values are local.

Limitations

• Only works if the requested values are local.

Good Bad

Limitations

• Only works if the requested values are local.

• The local problem needs to be formulated in terms of a global operator.

Conclusion

• Back-substitution can be significantly accelerated if only a few values are
requested.

• If requested values belong to a localized patch on a mesh, performance
benefits the most (because of nested dissection).

• Considering sparsity in the solution can improve performance by orders of
magnitude.

• The method is trivial to implement.

Thank you for your attention!
Contact: philipp.herholz@tu-berlin.de

mailto:philipp.herholz@tu-berlin.de

Applications: Auto-diffusion

• Compute heat diffusion from a single 
source vertex and evaluate the amount  
of heat staying at the source after some time.

• Only one value in is required.

b

x

