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Linear solvers in geometry processing

• Many applications require repeated solutions of linear systems.
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Sparse Cholesky factorization can be applied!
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• Idea: Reuse a global factorization:  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• Question: Can we quickly compute subset of solution?
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Sparse solution vector x   

 
 
 
 
 

•    will generally be dense. 

• Central insight: If we are interested in only a subset of values in    we do  
not have to compute all values during the back solve!
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Sparse solution vector x   

 
 
 
 
 
 
 
 

• How many values do we have to compute additionally? 

• Can we identify them efficiently?
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Nested dissection reordering
Input mesh Cholesky factor
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Applications: Parameterization
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Is it worth it?
non-sparse solve

sparse solve (our approach)
refactorize & solve



Amortization of factorization time
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Limitations

• Only works if the requested values are local. 

• The local problem needs to be formulated in terms of a global operator.



Conclusion

• Back-substitution can be significantly accelerated if only a few values are 
requested.  

• If requested values belong to a localized patch on a mesh, performance 
benefits the most (because of nested dissection). 

• Considering sparsity in the solution can improve performance by orders of 
magnitude. 

• The method is trivial to implement.



Thank you for your attention!
Contact: philipp.herholz@tu-berlin.de  

mailto:philipp.herholz@tu-berlin.de


Applications: Auto-diffusion

• Compute heat diffusion from a single 
source vertex and evaluate the amount  
of heat staying at the source after some time. 

• Only one value in    is required.
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